
1

Cascaded Localization Regression Neural Nets for
Kidney Localization and Segmentation-free Volume

Estimation
Mohammad Arafat Hussain, Ghassan Hamarneh, Senior Member, IEEE, and Rafeef Garbi, Senior Member, IEEE

Abstract—Kidney volume is an essential biomarker for a num-
ber of kidney disease diagnoses, for example, chronic kidney dis-
ease. Existing total kidney volume estimation methods often rely
on an intermediate kidney segmentation step. On the other hand,
automatic kidney localization in volumetric medical images is a
critical step that often precedes subsequent data processing and
analysis. Most current approaches perform kidney localization
via an intermediate classification or regression step. This paper
proposes an integrated deep learning approach for (i) kidney
localization in computed tomography scans and (ii) segmentation-
free renal volume estimation. Our localization method uses a
selection-convolutional neural network that approximates the
kidney inferior-superior span along the axial direction. Cross-
sectional (2D) slices from the estimated span are subsequently
used in a combined sagittal-axial Mask-RCNN that detects the
organ bounding boxes on the axial and sagittal slices, the
combination of which produces a final 3D organ bounding box.
Furthermore, we use a fully convolutional network to estimate the
kidney volume that skips the segmentation procedure. We also
present a mathematical expression to approximate the ‘volume
error’ metric from the ‘Sørensen–Dice coefficient.’ We accessed
100 patients’ CT scans from the Vancouver General Hospital
records and obtained 210 patients’ CT scans from the 2019
Kidney Tumor Segmentation Challenge database to validate
our method. Our method produces a kidney boundary wall
localization error of ∼2.4mm and a mean volume estimation
error of ∼5%.

Index Terms—Mask-RCNN, FCN, CNN, kidney localization,
kidney volume, Sørensen–Dice.

I. INTRODUCTION

CLINICALLY, the reduced or absent functionality of a
kidney for more than three months, is referred to as

chronic kidney disease (CKD). Kidney disease, often result-
ing from the tumor, occurs in both hereditary and sporadic
forms [1]. It is a significant risk factor for death worldwide [2].
The prevalence of CKD varies between 7-12% in different
regions of the world. For example, China, Canada, Australia,
the United States, Germany, Finland, Spain, and England
reported 1.7%, 3.1%, 5.8%, 6.7%, 2.3%, 2.4%, 4.0%, and
5.2%, respectively [3]. Different CKDs, for example, Autoso-
mal dominant polycystic kidney disease (ADPKD) and renal
artery atherosclerosis (RAS), often lead to the end-stage-renal-
disease (ESRD), which are associated with the change of kid-
ney volume. However, CKD detection is complicated. Usual
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laboratory tests such as the estimated glomerular filtration rate
(eGFR) and serum albumin-to-creatinine ratio often cannot
detect early disease and known to be unreliable in tracking dis-
ease progression [4]. Several works suggested kidney volume
as a potential surrogate marker for renal function. Thus, kidney
volume is considered useful for predicting and tracking the
progression of different CKDs [5], [6]. The total kidney volume
is now considered as the gold standard imaging biomarker
for ADPKD and RAS progression at the early stages of this
disease [6]. In addition, renal volume measurement is an
emerging alternative to renal scintigraphy, which is used in
evaluating split renal function in kidney donors [5]. It is also
considered the best biomarker in the follow-up evaluation of
kidney transplants [5].

Kidney volume from 3D computed tomography (CT) data
is typically estimated using different segmentation methods.
These segmentation methods can be broadly categorized into
two groups based on their use of any prior kidney localization
step. Some methods use manual/(semi)automatic kidney lo-
calization before segmentation, while other methods directly
perform segmentation without using a previous localization
step. Although both types of methods have been reported in the
literature, often, methods of the first category are preferred in
the clinical environment because kidney localization facilitates
better segmentation/volume estimation and can improve and
speed up other algorithms as kidney lesion detection and
registration [7].

II. RELATED WORK

A. Kidney Localization

For the last two decades, medical imaging scientists have
proposed several kidney localization approaches within the 3D
volumetric medical images. This section surveyed the most
relevant and recent machine learning-based kidney localization
approaches in CT, divided into hand-engineered feature-based
classical machine learning (ML) approaches and deep learning
(DL) approaches.

1) Classical ML Approaches: Criminisi et al. [8], [9]
predicted the locations of organ bounding box walls using
regression-forest (RF)-based approaches and achieved a mean
kidney bounding box wall localization error of ∼13mm.
Cuingnet et al. [10] used an additional RF to fine-tune the
method by Criminisi et al. [9] that improved the kidney
localization accuracy by ∼60% (i.e., mean kidney localization
error of 7mm). Gauriau et al. [11] estimated an organ bounding
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box from the cascaded RF-based organ confidence map and
achieved a mean wall localization error of ∼5.5mm for kidney
bounding boxes. Recently, Samarakoon et al. [12] proposed a
light RF that uses fewer nodes than regular RF to localize
different organs in the CT scan and achieved a mean kidney
localization error of ∼11mm. Zhou et al. [13] used ensemble
learning-based multiple 2D detectors and combined their out-
puts using collaborative majority voting in 3D to accomplish
robust kidney localization. In their subsequent work [14],
[15], they localized the kidney in CT images using template
matching, hand-crafted features, and local binary patterns. In
summary, these classical ML approaches estimate the location
of the kidney or its bounding box via predicting a continuous
regression value or voxel-based voting.

2) DL Approaches: Humpire et al. [7], [16] proposed a
convolutional neural network (CNN)-based approach to detect
six organs, including the kidneys. They trained three sepa-
rate CNNs to classify images taken from three orthogonal
directions, where the classification of a slice is performed
based on the presence or absence of a particular organ cross-
section in that slice. The 3D organ bounding box is then
generated by combining the classified labels of orthogonal
images, which achieved a localization error of ∼2.6mm for
kidneys. Lu et al. [17] proposed a method using a cross-
sectional fusion of CNN and fully convolutional networks
(FCN) for right kidney localization. In our previous work [18],
we proposed a kidney localization approach that used a
single CNN where 2D slice classifications from the three
orthogonal views were concatenated into a fully connected
layer to provide a voxel-wise kidney location prediction. In
summary, these DL approaches determine the kidney locations
via classifying the 2D CT slices, depending on the presence
or absence of the kidney cross-section in that. In contrast,
recently, Xu et al. [19] proposed a 3D region proposal network
for localizing eleven abdominal organs, including the kidneys.
Unlike classification CNN, region proposal networks usually
propose a 2D/3D region around an object of interest, based on
the learned feature maps. They achieved a localization error
of ∼4mm for kidneys.

B. Kidney Volume Estimation

Kidney volume is typically estimated using different seg-
mentation methods. Similar to the kidney localization ap-
proach, here we survey classical ML and DL methods for
kidney segmentation from CT, though we note that other
approaches exist for kidney segmentation from magnetic res-
onance (MR) images (e.g., [20]). Furthermore, we discuss
the segmentation-free volume estimation approaches in the
literature.

1) Classical ML Approaches: Zhou et al. used content-
based image retrieval, group-wise organ location calibra-
tion, and 3D GrabCut techniques for kidney localization
in [13], [14], [15], respectively. Cuingnet et al. [10] used
a combination of RF and template deformation to segment
kidneys. Glocker et al. [21] used a joint classification-RF
scheme to segment different abdominal organs, including kid-
neys. Khalifa et al. [22] developed a 3D kidney segmentation

framework integrating CT appearance features, higher-order
appearance models, and adaptive shape model features into a
random forest classification model. Hristova et al. [23] used
vantage point trees to classify voxels for kidney segmentation.
Zhao et al. [24] used CT intensity features from the image
in an RF framework for voxel-level classification to segment
kidneys.

2) DL Approaches: Chen et al. [25] proposed a 3D FCN
based method for automatic multiorgan segmentation in dual-
energy CT. Gibson et al. [26] proposed dense V-network
FCN for multiorgan segmentation from abdominal CT im-
ages. Valindria et al. [27] investigated learning from multiple
modalities for organ segmentation and showed effectiveness
on kidney segmentation. Thong et al. [28] showed promising
kidney segmentation performance using CNN. Keshwani et
al. [29] proposed a multitask 3D CNN to segment ADPKD.
Sharma et al. [30] performed the automated segmentation
of ADPKD kidneys using FCN. Groza et al. [31] compared
several CNN-based approaches for kidney segmentation and
argued that foveal FCN is the most suitable deep architecture.
Recently, more than two hundred deep learning methods
have been proposed for kidney segmentation in the 2019
Kidney Tumor Segmentation (KiTS) Challenge [32], where
most of the methods are variants of 3D U-Net [33] or V-
Net [34]. Recent work on medical image segmentation tasks
included many contributions based on 2D and 3D U-shaped
networks (i.e., U-Nets) [35]. For example, to improve the U-
Net architecture robustness to challenging organ and tumor
segmentation scenarios, attention gates [36] and squeeze-and-
excitation blocks [37] have been proposed.

3) Segmentation-free Approaches: Classical ML-based seg-
mentation methods require hand-engineering features, which
is often hard to design optimally. DL-based segmentation
approaches showed better kidney segmentation performance
than the classical ML approaches due to their capability of
learning optimal features automatically. However, DL-based
segmentation approaches often require training deep and com-
plex dense prediction networks through expensive computa-
tion. Furthermore, it is often challenging to decide on the deep
architecture and appropriate loss function. Besides, kidney
cancer appears very heterogeneous on CT images. It often
appears hyperdense (i.e., calcifications) as well as hypodense
(e.g., cystic and necrotic tissue). This scenario introduces
additional challenges to deep learning-based segmentation of
kidneys [39]. Many organ functionality-related parameters are
estimated using segmentation in clinical settings, although the
ultimate aim is not producing a segmented organ. Thus, this
segmentation procedure introduces additional challenges in
estimating these vital parameters, e.g., total kidney volume.
Avoiding the computational overheads and limitations asso-
ciated with segmentation approaches, several segmentation-
free ML approaches have been proposed for cardiac bi-
ventricular volume estimation from MR images [40]–[48],
and direct tumor volume estimation from PET scans [49].
Recently, we proposed two segmentation-free kidney volume
estimation approaches using a dual regression forest [38], and
a CNN [18], respectively, which bypassed the segmentation
step altogether. To the best of our knowledge, we are the first
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TABLE I
LIST OF ML-BASED KIDNEY LOCALIZATION AND VOLUME ESTIMATION
APPROACHES FOR CT. SHADED ROWS REPRESENT THE METHODS THAT

INTEGRATE THE KIDNEY LOCALIZATION AND VOLUME ESTIMATION
PROCESSES. ACRONYMS USED AS: SEG–SEGMENTATION,

CM–CLASSICAL ML, AND DL–DEEP LEARNING.

Localization Volume Estimation
Seg Seg-free

Methods CM DL CM DL CM DL
Criminisi et al. [8] X
Criminisi et al. [9] X
Cuingnet et al. [10] X X
Gauriau et al. [11] X
Samarakoon et al. [12] X
Zhou et al. [13] X
Zhou et al. [14] X
Zhou et al. [15] X
Humpire et al. [16] X
Humpire et al. [7] X
Lu et al. [17] X
Hussain et al. [18] X X
Xu et al. [19] X
Zhou et al. [13] X
Zhou et al. [14] X
Zhou et al. [15] X
Glocker et al. [21] X
Khalifa et al. [22] X
Hristova et al. [23] X
Zhao et al. [24] X
Chen et al. [25] X
Gibson et al. [26] X
Valindria et al. [27] X
Thong et al. [28] X
Keshwani et al. [29] X
Sharma et al. [30] X
Groza et al. [31] X
Hussain et al. [38] X
Proposed X X

to use CNN [18] for segmentation-free renal volumetry.

C. Contributions in the Proposed Method
This paper proposes an integrated approach for kidney

localization and segmentation-free volume estimation using
CNN-guided Mask-RCNN. We summarize the state-of-the-
art ML-based methods for kidney localization and volume
estimation from CT in Table I. In the table, we see that the
proposed method is one of the two DL-based integrated meth-
ods (shown in shaded rows), where the other is our previous
work [18]. The proposed method extends our previous work
and achieves improved performance in kidney localization and
volume estimation. Our proposed method’s first module uses
an effective CNN-guided Mask-RCNN approach for efficient
kidney localization in CT. The second module subsequently
uses the localized kidney data in an FCN for segmentation-
free kidney volume estimation. Thus, the technical novelty of
the proposed approach is four-fold:

1) we propose a novel CNN-based pipeline for kidney lo-
calization (Fig. 1). Although the underlying components
of this pipeline are not novel, the way they are combined
is what makes our method novel and effective,

2) we propose a new way to tackle a specific task in deep
learning, i.e., area prediction without segmenting the
kidney cross-section,

3) the design of the input-output relationship of the data in
different parts of the proposed CNN pipeline is novel,
and

4) for the first time, we derive a mathematical relation
between two well established metrics in this field, the
‘volume error’ and ‘Sørensen–Dice coefficient’, to fa-
cilitate an approximate comparison between these two
metrics.

The paper is organized as follows. Section III describes
the proposed kidney localization-volume estimation technique.
Section IV describes the validation and experiment setup. Sec-
tion V presents the results to demonstrate the strength of our
algorithm. Concluding remarks are presented in Section VI.

III. METHODS

In recent years, the increase in modern computers’ com-
putation capabilities has led to the development of complex
3D CNN models, which are very successful in 3D volumetric
medical image-based applications. However, these complex
models’ inference also requires computers with extensive
computation capabilities, which is not a match for point-of-
care computers in typical clinical settings. That is why we
explore the 2D CNN approaches in this paper, which are
lighter in model complexity. Simultaneously, we also show
better kidney localization and volume estimation performance
than the state-of-the-art 3D CNN approaches.

A. Kidney Localization

Our kidney localization approach is a three-step pipeline
(Fig. 1, box II-A). In the first stage, we use a kidney span
detection CNN (S-CNN) classifying 2D axial slices, enabling
a rough detection of the targeted kidney span along the axial
direction. In the second stage, we use a Mask-RCNN to detect
the 2D kidney bounding box along the coronal and sagittal
directions. In the third and final stage, we use the same Mask-
RCNN to detect the 2D kidney bounding box along the axial
and sagittal directions. Since RCNN typically produces false-
positive kidney bounding boxes in those slices that do not
contain the kidney, the CNN pipeline of our method controls
the choice of slices (fed to the RCNNs) by extracting those
from kidney-containing regions by using S-CNN. We sequen-
tially provide technical details and justification for different
design choices in the following sections.

1) Kidney Span Detection using S-CNN: We use the S-
CNN (ResNet-50 [50]) to classify 2D axial slices that enable
a rough detection of the kidney span along the axial direction
(Fig. 1, box II-A1). The initial slice classification labels (i.e.,
0: kidney absent, 1: kidney present) may contain a few false
positives and false negatives. To remove those, we perform a
moving average over the label values along the axial direction
with a moving window size of 12 cm as a typical kidney length
is approximately 12cm [51]. Then we divide these average
values by their maximum value to normalize between [0, 1]
and estimate the organ span from the range of values ≥ 0.75.
We empirically found that 0.75 is a robust threshold. This
approximate span could be larger than the actual kidney span.
If the estimated span comes out smaller than a typical kidney
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Fig. 1. Schematic diagram of our proposed method for analyzing renal CT scans: (A) The CNN-guided Mask-RCNN- and FCN-based integrated kidney
localization component, and (B) the segmentation-free volume estimation component.

length (i.e., 12cm), we take extra slices into the span in the
superior and inferior directions to ensure at least 12cm kidney
height. This S-CNN (ResNet-50) network was pretrained on
the ImageNet dataset, and we fine-tune the network weights
on our kidney dataset. Although the S-CNN aims to detect
the approximate kidney span in the axial direction, we fine-
tune this network using cross-sectional 2D slices from all three
orthogonal directions. For details of this network structure and
function, we refer readers to [50].

2) Bounding Box Detection in the Coronal-Sagittal Direc-
tion: In this stage, we use a Mask-RCNN [52] to detect the 2D
kidney bounding box along the coronal and sagittal directions
(Fig. 1, box II-A2). The input to the Mask-RCNN is the 2D
axial slices strictly taken from the inside of S-CNN’s selected
span.

The Mask-RCNN produces the classification, bounding
box, and segmentation mask of an object in an image. It
works in two stages: (1) first, it proposes regions on the
input image where there is a likeliness of the presence of
an object, and (2) second, the network classifies the object
and produces the bounding box and segmentation mask of
a particular object inside the proposed region. Mask-RCNN
uses a feature pyramid network (FPN), referred to as the
‘backbone.’ The FPN has laterally connected bottom-up and
top-down pathways. The bottom-up pathway is nothing but a
CNN that extracts image features. The top-bottom pathway
produces a feature pyramid of similar size to that of the
bottom-up pathway. The FPN features are then used by a
region proposal network (RPN) for proposing an object region.
A pooling layer [region-of-interest (ROI)-align] subsequently
extracts fixed-length feature vectors from the proposed regions.
Each feature vector then goes through a sequence of fully
connected/convolution layers and branches into three output
layers: a classification layer, an object bounding box layer, and

a segmentation masking layer. Mask-RCNN uses a multitask
loss function L = λ1Lcls + λ2Lbbox + λ3Lmask, where λ1,
λ2 and λ3 are the balancing weights, and Lcls, Lbbox and
Lmask are the class loss, bounding box loss and mask loss,
respectively, defined as:

Lcls = −t1 log(s1)− (1− t1) log(1− s1), (1)

Lbbox = q
∑

i∈1,2,3,4
smoothL1

(bti − bi), (2)

where smoothL1(u) =

{
0.5u2, if |u| < 1

|u| − 0.5, otherwise

Lmask =q{− 1

m2

∑
1≤i,j≤m

[−ti,j log(si,j)

− (1− ti,j) log(1− si,j)]}, (3)

where t ∈ {0: background, 1: kidney} is the true label, s is
the prediction score, q is equal 1 for positive anchor (i.e.,
kidney containing region proposal) or 0 otherwise, b is a
vector representing the four parameterized coordinates of the
predicted bounding box, and bt is that of the ground-truth box
associated with a positive (i.e., q = 1) anchor, and m2 is the
area of a mask of dimension m × m pixels for each ROI.
Based on the kidney localization performance analysis on the
validation data, we empirically set λ1 = λ2 = λ3 = 1.

We use ResNet-50 [50] as the bottom-up network of FPN in
our Mask-RCNN. This ResNet-50 is fine-tuned from S-CNN.
For fine-tuning, we use a kidney containing 2D slices from
all three orthogonal directions. During inference, we restrict
the Mask-RCNN to produce a single bounding box and a
kidney mask per slice. Although the Mask-RCNN produces
a 2D bounding box around a kidney cross-section, in most
cases, it does not tightly encompass a kidney cross-section.
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Rather, gaps are seen between the predicted boundary line and
the actual kidney boundary. Therefore, we use the predicted
kidney mask to generate the rectangular kidney bounding box.
Finally, we find the sagittal and coronal edges of a bounding
box, which is the Union set of all axial bounding boxes,
by X1 = min(x1), X2 = max(x2), Y1 = min(y1) and
Y2 = max(y2), where min and max are the minimum and
maximum operators, respectively, and X1, X2 and Y1, Y2 are
the largest-box edges along the coronal and sagittal directions,
respectively (Fig. 1, box II-A2). Note that finding the rough
kidney span along the axial direction by the initial S-CNN is
important for this stage, as false-positive bounding boxes may
corrupt these estimates.

3) Bounding Box Detection in the Axial-Sagittal Direction:
In this final detection stage, we use the same Mask-RCNN.
In this stage, the input to the Mask-RCNN is the 2D sagittal
slices strictly taken from [X1, X2] (Fig. 1, box II-A3). In
this stage, the Mask-RCNN detects the kidney bounding box
along the sagittal and coronal directions. This stage updates
the estimated axial kidney span in the previous step. Finally,
we find the largest bounding box’s axial edges, which is the
largest of all the sagittal bounding boxes, by Z1 = min(z1)
and Z2 = max(z2), where z1 and z2 are the edges along the
axial directions. Lastly, we combine the final predicted spans
in the second and third stages by the Mask-RCNN to produce
the 3D bounding box around the kidney (Fig. 1, box II-A3).

B. Segmentation-free Kidney Volume Estimation

In Section III-A, we discussed the kidney encompassing
tight ROI estimation process. Typically, there is a considerable
variation in kidney size and shape across patients. It is often
customary to feed images of similar size to a CNN during
training. In this paper, we fix our input image patch size to
128 × 128 pixels, consistent across the training data. We use
Kp/Pp as the output variable (label) for a particular image
patch, where Kp is the total kidney pixels, and Pp is the total
pixels in the image patch before getting resized to 128× 128
pixels.

We use an FCN (Fig. 1, box II-B) to predict the cross-
sectional area of a kidney in each patch. Our FCN is a
regression network consisting of six layers, excluding the
input. It has five convolutional layers, one fully connected
layer (only to generate a single activation), and one Euclidean
loss layer. To avoid overfitting, we use the dropout in the
last convolution layer. During inference, the FCN predicts
the kidney area in a particular image patch. Since all the
input images were resized to 128 × 128 pixels, we multiply
the FCN-predicted area estimate by a factor (128× 128)/Pp.
Finally, we calculate a particular kidney’s volume by adding
the FCN-predicted areas for all of its axial image patches and
multiplying by the voxel dimensions (Fig. 1, box II-B).

IV. VALIDATION AND EXPERIMENT SETUP

A. Datasets

We used 100 patients’ CT scans accessed from the Vancou-
ver General Hospital (VGH) records with required ethics ap-
provals by the UBC Clinical Research Ethics Board (CREB),

certificate number: H15-00237. There were a total of 200
kidney samples, and we used 130 samples (from 65 ran-
domly chosen patients) for training, 20 samples (from 10
randomly chosen patients) for validation, and the remaining
50 samples for testing. Our dataset included 12 pathological
kidney samples (with endo- and exophytic tumors), and our
training and test data contained six pathological cases each.
We made sure that kidneys from the same patient were not
split across the training, validation, and test cases. These data
were acquired using a Siemens SOMATOM Definition Flash
(Siemens Healthcare GmbH, Erlangen, Germany) CT scanner.
Ground truth kidney bounding boxes were calculated from
manual kidney delineation performed by an expert radiologist.
We show a summary of these data in Table II.

TABLE II
SUMMARY OF RELEVANT AND AVAILABLE INFORMATION OF THE CT DATA

FROM VGH.

Items Descriptions
Pixel Dimensions Axial: 1.5∼3mm

Coronal: 0.5820∼0.9766mm
Sagittal: 0.5820∼0.9766mm

Contrast Agent Used 45 cases
Total Patients 100
Number of Males 50
Number of Females 50
Age Mean: 56.71±15.81 Y

Minimum Age: 19 Y
Maximum Age: 89 Y

Number of Pathological Kidneys 12 kidneys in 12 patients

We also used 210 patients’ CT scans from the 2019 Kidney
Tumor Segmentation (KiTS) Challenge database [32]. This
database contains patients’ scans accessed from the University
of Minnesota Medical Center records. These patients under-
went partial or radical nephrectomy for one or more kidney
tumors between 2010 and 2018. We used 160 randomly chosen
patients’ data for training, 15 randomly chosen patients’ data
for validation, and the remaining 35 patients data (70 kidney
samples) for testing. Here also, we made sure that kidneys
from the same patient were not split into the training, valida-
tion, and test cases. We also collected the kidney segmentation
data from the same database. A summary of these data is
shown in Table III:

TABLE III
SUMMARY OF RELEVANT AND AVAILABLE INFORMATION OF THE CT DATA

FROM THE KITS.

Items Descriptions
Pixel Dimensions Axial: 3mm (uniformed across cases)

Coronal: 0.7816mm (uniformed across cases)
Sagittal: 0.7816mm (uniformed across cases)

Total Patients 210
Contrast Agent Used in all cases
Number of Males Not available
Number of Females Not available
Age Mean: Not available

Minimum Age: Not available
Maximum Age: Not available

Pathological Kidneys Either one or both kidneys in all patients
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B. Competing Methods

We compare our kidney boundary localization performance
to that by Cuingnet et al. 2012 [10] (M2), Criminisi et al.
2010 [8] (M1) and Criminisi et al. 2013 [9] (M3), Gauriau et
al. 2015 [11] (M4), Hussain et al. 2017 [18] (M5), Samarakoon
et al. 2017 [12] (M6), Humpire et al. 2018 [7] (M7), Xu et
al. 2019 [19] (M8), and Jaeger et al. [53] (M9) in Table IV.

We further compare our kidney volume estimation perfor-
mance to that by Zakhari et al. 2014 [54] (V1), Zhen et al.
2014 [46] (V2), Hussain et al. 2016 [38] (V3), Insensee et al.
2019 [55] (V4), Hou et al. 2019 [56] (V5), Mu et al. 2019 [57]
(V6), and Hussain et al. 2017 [18] (V7) in Table V.

C. Implementation Details

Given that the left and right kidneys typically fall in
symmetric half volumes of the abdomen area, we use an
automatic routine to divide the CT volume medially along
the left-right direction. CT intensity values are expected to
be identical for the same organ regardless of the scan’s
origin. Therefore, we clipped the CT intensity to the range
[−200, 350]HU, a typical range for kidneys. We performed
our model training on a workstation with Intel 4.0 GHz i7
processor, an Nvidia Titan Xp GPU with 12GB of VRAM,
and 32GB of host memory. While any CNN can be used
as S-CNN, we found in our prototyping stage that ResNet-
50 performs better than AlexNet, VGGNet, and ResNet-101.
On the ground that ResNet-50 is a good trade-off between
accuracy and model complexity, and it leads to outperforming
other models, we used ResNet-50 in this work. The Mask-
RCNN backbone network in Sections III-A2 and III-A3 is
also ResNet-50, which are fine-tuned from S-CNN. We fine-
tuned S-CNN and both Mask-RCNNs for about 100 epochs
with an initial learning rate of 0.001 for the first 50 epochs
and 0.0001 for the last 50 epochs. The batch size was 256
for S-CNN and 128 for Mask-RCNNs. We also trained the
proposed FCN for about 200 epochs with an initial learning
rate of 0.01 for the first 100 epochs and 0.001 for the last
100 epochs. All CNNs were trained using stochastic gradient
descent with a momentum of 0.9. These parameters were
found to be optimal for our validation data during prototyping.
We tested our kidney localization networks on the VGH and
KiTS data separately as well as in cross-domain fashion (i.e.,
trained and validated on VGH and tested on KiTS data,
and vice versa). When we trained our localization networks
on a particular dataset, the hyperparameters of the networks
were empirically optimized based on the validation results
for the same dataset. We also adopted a similar validation-
based empirical hyperparameter optimization approach for the
kidney volume estimation networks.

D. Sørensen–Dice Coefficient to Volume Error Approximation

State-of-the-art kidney volume estimation approaches are
segmentation-based, and those report accuracy in terms of the
Dice index. On the other hand, Dice cannot be calculated for
segmentation-free methods as there is no voxel-level classifi-
cation. However, the percentage of volume error is not linearly
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Fig. 2. ROC curves of the kidney cross-section detection performance by the
Mask-RCNN and S-CNN on 2D CT slices.

related to the Dice index. Therefore, it is difficult to directly
compare the Dice index performance with the percentage of
volume error. In Appendix, we derive a mathematical relation
between the ‘volume error’ and ‘Sørensen–Dice coefficient’
to facilitate an approximate comparison between these two
metrics and arrive at the following formula:

VE (%) ≈
∣∣∣∣ 2

SDice
− 2

∣∣∣∣× 100, (4)

where VE is the volume error, and SDice is the Sørensen–Dice
coefficient.

V. RESULTS

In the following sections, we provide a quantitative com-
parison of the kidney bounding box localization and volume
estimation performance between the proposed and state-of-the-
art methods.

A. Kidney Bounding Box Localization Performance

At first, we demonstrate the comparative cross-section de-
tection performance by the Mask-RCNN and S-CNN in the
axial CT slices in Fig. 2. As we discussed in Section III-A
that RCNN typically produces false-positive kidney bounding
boxes in those slices that do not contain the kidney, possibly
because of lacking the global context in the proposed region,
we see in Fig. 2 that false positive rate is higher for Mask-
RCNN. We tackled this challenge by using a carefully de-
signed CNN pipeline that starts with S-CNN, narrowing the
kidney search region in the abdomen region. We see in Fig. 2
that S-CNN performed better in kidney cross-section detection
than Mask-RCNN as depicted by the S-CNN ROC curve.

In this work, we fed axial slices as input to the S-CNN.
However, we also checked the kidney localization performance
with the coronal and sagittal slices as S-CNN inputs. We found
a slightly higher error in kidney bounding box localization
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TABLE IV
COMPARISON OF MEAN KIDNEY BOUNDING WALL LOCALIZATION ERROR. IN THE ‘CONTRAST USED’ COLUMN, ‘MIXED’ AND ‘ALL’ INDICATE SOME OR

ALL PATIENTS HAVE BEEN ADMINISTERED WITH CONTRAST, RESPECTIVELY. NOT MENTIONED DATA ARE INDICATED WITH (-). X→Y INDICATES THE
PROPOSED MODEL BEING TRAINED AND VALIDATED ON X, AND TESTED ON Y DATA. 5-FCV DENOTES 5-FOLD CROSS-VALIDATIONS.

Methods Short Total Train (Val) Test Resolution (mm) Contrast Wall Error (mm)
Name Scans Scans Scans x, y z Used Left Kidney Right Kidney

Criminisi et al. 2010 [8] M1 100 55 45 ∼0.5–1.0 ∼1.0–5.0 Mixed 17.30±16.50 18.50±18.00
Cuingnet et al. 2012 [10] M2 233 54 179 ∼0.5–1.0 ∼0.5–3.0 Mixed 7.00±10.00 7.00±6.00
Criminisi et al. 2013 [9] M3 400 318 82 ∼0.5–1.0 ∼1.0–5.0 Mixed 13.60±12.50 16.10±15.50
Gauriau et al. 2015 [11] M4 130 50 80 ∼0.5–1.0 ∼0.5–3.0 Mixed 5.50±4.00 5.60±3.00
Hussain et al. 2017 [18] M5 100 65 (10) 25 ∼0.6–1.0 ∼1.5–3.0 Mixed 6.19±6.02 5.86±6.40
Samarakoon et al. 2017 [12] M6 100 54 45 - - Mixed 11.52±9.60 10.98±9.60
Humpire et al. 2018 [7] M7 1884 1130 (377) 377 - ∼1.0–2.0 - 2.67±7.18 3.03±9.30
Xu et al. 2019 [19] M8 201 118 (13) 70 ∼0.6–1.0 ∼0.5–5.0 All 4.31±4.18 3.89±3.47
3D Mask-RCNN (KiTS) [53] M9 210 160 (15) 35 0.7816 3 All 7.83±8.13 8.74±12.63
Proposed (on KiTS data) - 210 160 (15) 35 0.7816 3 All 2.06±4.39 3.18±14.02
Proposed (KiTS/ResNet-101) - 210 160 (15) 35 0.7816 3 All 2.55±6.53 3.72±16.33
Proposed (on VGH data) - 100 65 (10) 25 ∼0.6–1.0 ∼1.5–3.0 Mixed 1.93±1.21 2.45±1.75
Proposed (VGH→KiTS) - 310 90 (10) 210 ∼0.6–1.0 ∼1.5–3.0 Mixed 4.89±8.13 5.24±9.42
Proposed (KiTS→VGH) - 310 190 (20) 100 ∼0.6–1.0 ∼1.5–3.0 Mixed 2.93±3.56 3.13±4.02
Proposed (on KiTS, 5-FCV) - 210 168 (42) - 0.7816 3 All 2.10±4.05 3.18±14.67

when S-CNN is applied on either coronal slices or sagittal
slices, though not significantly different than the proposed
approach. For example, kidney bounding box errors are 2.33±
4.58mm (KiTS-left kidneys) and 3.31 ± 14.81mm (KiTS-
right kidneys) when S-CNN is applied on the coronal slices,
and 2.41± 4.67mm (KiTS-left kidneys) and 3.39± 15.10mm
(KiTS-right kidneys) when S-CNN is applied on the sagittal
slices.

Then we quantitatively compared the performance of our
proposed kidney localization method with those reported in
recent kidney localization approaches M1-8 in Table IV. Our
bounding box has six walls, and for a particular kidney sample,
we used the mean of the Euclidean distance errors between
the estimated and ground-truth locations for all six walls.
Please note that each method was independently implemented
and tested on different CT databases. However, the type of
data these methods used are very similar to ours in terms
of resolution, area scanned (i.e., abdominal CT), and scan
quality (shown in Table IV). Therefore, our comparisons are
conservative, and rather than using our implementation of
other contrasting methods, we compare to each authors’ best
self-reported accuracy values.

The M2 method first, used the M-1 method for coarse
localization of both left and right kidneys, then fine-tuned these
locations using an additional RF per left/right kidney. The
M3 method was an incremental work over the M1, and both
used RFs for various organ localization tasks. The M4 method
used an extended cascade of RFs to estimate an organ’s
confidence map, and the prediction was thresholded to obtain
a final organ bounding box. The M5 method (our previous
method [18]) used a deep CNN-based method for kidney 3D
bounding box localization based on 2D orthogonal slice-based
kidney candidacy decisions. The M6 method proposed a light
RF consisting of fewer nodes than regular RF to localize
different organs in the CT scans. The M7 method used separate
deep CNNs for images from three orthogonal directions and
performed better in organ boundary wall localization. The M8
method used a 3D region proposal network to detect eleven

abdominal organs, including the left and right kidneys. The
M9 method used the 3D implementation of the Mask-RCNN,
designed for use on volumetric medical images. We trained
this method on the KiTS data, and the mean boundary wall
localization error by this method is ∼8mm. Finally, we show
the results of our proposed method on the KiTS and VGH
data. Although KiTS datasets contain tumors in the kidney,
our method performs better in mean kidney boundary wall
localization than other state-of-the-art techniques. However,
we observed a higher standard deviation for the right kidney.
It happened possibly because some of the right kidneys in
this dataset have tumors in the upper pole, confusing boundary
estimation. Here, we also show the performance of ResNet-101
as S-CNN and Mask-RCNN backbone. It is shown in [50] that
ResNet outperforms other contemporary CNNs (e.g., VGG,
GoogleNet) in ImageNet classification task. Therefore, we
tested the classification performance between ResNet-50 and
ResNet-101 in this work. In Table IV, we see that ResNet-
50 marginally performs better than ResNet-101 in kidney
boundary wall localization. We further see in Table IV that the
proposed method produces the lowest mean wall localization
error for both the left and right kidneys on the VGH data. We
also checked the proposed method’s performance by training
it on VGH data and testing on KiTS data, and vice versa. The
VGH database is 2× smaller than the KiTS database. Besides,
a contrast agent is used in all KiTS database scans, while only
half of the scans in VGH have contrast applied. Furthermore,
almost all scans in the KiTS database had kidney tumors.
Therefore, these two databases are different in many aspects,
and this cross-domain experiment yielded a comparatively
worse performance in kidney bounding box localization than
the in-domain performance, as seen in Table IV. Nevertheless,
these cross-domain results are better than most of the state-
of-the-art approaches. We finally checked the k-fold cross-
validation performance of the proposed method on the KiTS
data. In the last row of Table IV, we see that the mean
kidney localization performance by the 5-fold cross-validation
is similar to that of the non-cross-validation results on the
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Fig. 3. Box-plot of wall distance error (mm) per wall side of the kidney by
the proposed method on the KiTS and VGH data.

KiTS data.
We also estimated the intersection-over-union (IoU) per-

formance of the proposed method for both VGH and KiTS
datasets. For the VGH data, we achieved IoU of 0.83± 0.10
and 0.82 ± 0.13 for the left and right kidneys, respectively.
Similarly, for the KiTS data, we achieved an IoU of 0.75±0.10
and 0.68 ± 0.19 for the left and right kidneys, respectively.
We further estimated the distance-to-centroid error by the
proposed method for both datasets. For the VGH data, we
achieved a distance-to-centroid error of 2.61 ± 1.58mm and
4.54 ± 7.43mm for the left and right kidneys, respectively.
Similarly, for the KiTS data, we achieved a distance-to-
centroid error of 5.36 ± 4.56mm and 11.92 ± 21.35mm for
the left and right kidneys, respectively.

In Fig. 3, we show the box plot of the wall distance errors
(mm) by the proposed method in the superior, inferior, anterior,
posterior, left, and right directions of a kidney in the KiTS
and VGH datasets. This figure further supports the mean error
reported in Table IV. However, we also see in this figure that
the errors for the KiTS in the superior-inferior direction are
comparatively higher than those in the anterior-posterior and
left-right directions. Plausible explanations for this scenario
could be two-fold: (1) the slice thickness is higher in the axial
direction than that in the coronal and sagittal directions, and
(2) some of the right kidneys in the KiTS dataset have tumors
in the upper pole, which is responsible for the higher boundary
error in the axial direction. Although smaller than those for
KiTS, we see a similar error pattern in the superior-inferior
direction for the VGH data, which may be attributed to point
(1) above.

B. Segmentation-free Kidney Volume Estimation Performance

We provide comparative results of our proposed method
with those obtained by three generic approaches: a manual
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Fig. 4. Scatter plots showing the volume correlations between the actual
and proposed FCN-based estimates for the KiTS and VGH data. The Pearson
correlation coefficients are 0.9645 and 0.9714, and p-values are 0.9042 and
0.7521 for the KiTS and VGH data, respectively.

TABLE V
VOLUME ESTIMATION ACCURACY COMPARED TO STATE-OF-THE-ART
COMPETING METHODS. ACRONYMS USED- SN: SHORT NAME, NTS:
NUMBER OF TEST SAMPLES (THERE ARE 2 KIDNEY SAMPLES PER

PATIENT), 5-FCV: 5-FOLD CROSS-VALIDATION.

Method Type Methods SN NTS Mean Volume
Error (%)

Manual Ellipsoid Zakhari et al. 2014 [54] V1 44 14.20± 13.56

Fitting
Regression Forest Zhen et al. 2014 [46] V2 44 36.14± 20.86

(Seg-free) Hussain et al. 2016 [38] V3 44 9.97± 8.69

Deep Learning Insensee et al. [55] V4 180 ∼ 5.40

(Segmentation Hou et al. [56] V5 180 ∼ 6.74

on KiTS Data) Mu et al. [57] V6 180 ∼ 5.58

Deep Learning Hussain et al. 2017 [18] V7 50 8.05± 8.91

(Seg-free) Proposed with FCN - 50 4.80±3.89
VGH Data)
Proposed with FCL V8 50 5.92± 4.50

(VGH Data)
Proposed with FCN - 70 7.26± 6.80

(KiTS Data)
5-FCV with FCN - 84 7.79± 6.70

(KiTS Data)

clinical method, two regression forest-based approaches, and
four deep learning approaches. We estimated the ground truth
kidney volumes for both VGH and KiTS data from the
kidney annotations by expert radiologists. Nevertheless, first,
we show the proposed method’s performance quantitatively
in Fig. 4, where we illustrate the correlation between the
actual and estimated kidney volumes for the KiTS and VGH
data, respectively. Estimated p values between the actual and
estimated volumes are 0.9042 and 0.7521 for the KiTS and
VGH data, respectively. It fails to reject the null hypothesis,
and therefore, the actual and estimated kidney volumes do not
statistically differ in both datasets.

We also show the quantitative comparative results of our
segmentation-free volume estimation approach in Table V.
Using (4), we convert the reported SDice into the percentage
of volume error for three state-of-the-art kidney segmentation
approaches that achieved ranks first, second, and third in the
2019 KiTS Challenge [32]. We also show these results in
Table V.

First, we consider a manual approach V1, typically used
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by radiologists in clinical settings. The experts obtain three
principal axes of a kidney, which correspond to a 3D ellipsoid
that approximates that particular kidney. In Table V, we see
that the estimated mean volume error (computed by expert
radiologists) for this approach is approximately 15% with high
standard deviation.

Next, we consider two conventional ML-based approaches,
V2 and V3, for segmentation-free kidney volume estimation.
The method V2 used a single regression forest, and the
corresponding volume estimation error is the worst among the
comparing methods. On the other hand, using dual regression
forests, our initial work V3, shows better volume estimation
accuracy than that by V2.

In Table V, we also included kidney volume estimation per-
formance by three state-of-the-art DL-based approaches, V4,
V5, and V6, that ranked first, second and third, respectively, in
the 2019 KiTS Challenge. These methods initially reported the
kidney segmentation performance in terms of Sørensen–Dice
coefficient, which we converted into an approximate mean vol-
ume error using (4). Although these methods (V4-6) reported
their results on the same KiTS dataset, we did not reimplement
these methods as our implementation might result in reduced
performance because of the lack of proper parameter tuning.
On the other hand, our proposed Sørensen-Dice to volume
error approximation gives benefit to the segmentation-based
Dice scores as this conversion assumes that the segmentation
method produces very low false negatives (see Appendix for
details). Thus, the converted volume error by V4-6 methods
would not be lower than what we showed in Table V.

Later, we showed the segmentation-free kidney volume
estimation performance by a CNN-based approach V7. It
showed better volume estimation accuracy than that by V2 and
V3 as CNN better captured the rich and complex variability
in the kidney anatomy and outperformed the hand-engineered
feature representations in V2 and V3.

In this work, we further improve the volume estimation
accuracy using a comparatively deeper network than that in
V7. This network utilized fully convolution layers except for
the layer before the loss calculation to accumulate the network
activation as a single value. We see that the FCN approach
shows the lowest volume estimation error on the VGH data
and is also the lowest among all methods in Table V.

We replaced the final convolution layer ‘C5’ of size 1 ×
1 × 1096 (Fig. 1, box II-B) with a fully connected layer
(FCL) of equal size (i.e., 1096 × 1). This change makes the
FCN a CNN, which predicts worse kidney cross-sectional area
estimates than that by the FCN (Table V: V8). We infer that
the FCN performs better than CNN because of the better
feature correspondence among convolution layers. In contrast,
a fully connected layer typically learns a completely new set
of weights based on the previous layer’s activation.

Finally, we show the volume estimation performance of
the proposed FCN approach on the KiTS data in Table V.
Since almost all kidney samples in this dataset contain tumors
of various sizes and shapes, the volume estimation error is
slightly higher than that for the VGH data. Comparing this
result with that by the state-of-the-art segmentation-based ap-
proaches V4-6, we see that V4-6 approaches perform slightly

better than the proposed method. However, we emphasize that
this small drop in accuracy compared to these state-of-the-
art is overwhelmingly compensated by a substantial reduction
in the number of model parameters (i.e., our FCN has 200×
fewer parameters than those by the state-of-the-art methods
(i.e., V4-6), and lighter models are less prone to over-fitting).
In the last row of Table V, we see that the mean kidney volume
estimation error by the 5-fold cross-validation is similar to that
by the non-cross-validation results on the KiTS data.

Although we used Mask-RCNN-produced kidney masks
in estimating kidney bounding boxes, we did not use those
masks in calculating the kidney volume because the contour
of the masks does not follow the exact kidney cross-section.
These masks eventually result in an overestimation of the
cross-sectional area, and thus volume. For example, the mean
volume error is 13.83± 12.73 for the KiTS dataset, when the
volume is estimated from the Mask-RCNN produced masks.
Rather, we used a separate FCN for segmentation-free kidney
volume estimation, which can be detached from the proposed
Mask-RCNN-FCN working pipeline for stand-alone use. In
clinical settings, clinicians often localize kidney ROI manually.
In that case, the FCN can be independently used for estimating
the total kidney volume.

We also performed the Student t-test between the estimated
volumes by the proposed FCN and V4-6 methods for KiTS
data. The estimated p values are greater than 0.05. These
statistical tests fail to reject the null hypothesis. Therefore, the
estimated volumes by the proposed FCN and V4-6 methods
do not statistically differ, although our approach uses 200×
fewer parameters than that by V4-6.

Next, we show the Bland-Altman plots for the actual and
estimated volumes for the VGH and KiTS datasets in Figs. 5(a)
and (b), respectively. From these plots, we see that very few
samples are outside the limits of the agreement lines, thus
proofing the robustness of our FCN approach.

We also visually demonstrate the comparison of the mean
distribution of the ground truth and estimated kidney cross-
sectional area in Fig. 6 for the VGH and KiTS data. Our FCN
predicts the ratio between the kidney cross-sectional area and
the 2D ROI area. So, in Fig. 6, we plot the mean kidney area
to ROI area ratio for all test kidney samples along the axial
direction. Since the kidney span along the axial direction varies
across kidneys, we resample all the kidney spans to 25 slices
to make those consistent across all samples. We can see in
Fig. 6 that the mean and standard deviation of the kidney area
to ROI area ratio by the proposed method follows the same
trend as the ground truth. Besides, the Jarque-Bera test [58]
indicates that these ratio data follow a normal distribution.
Therefore, we performed the Student t-test on both samples,
and the estimated p values are 0.775 and 0.6442 for the VGH
and KiTS data, respectively. These statistical tests fail to reject
the null hypothesis. Therefore, the ground truth and estimated
kidney area to ROI area ratio do not statistically differ.

Our proposed FCN for segmentation-free kidney volume
estimation is also very light in terms of the number of trainable
parameters (∼94,000). In contrast, one of the recent and pop-
ular segmentation-based organ volume estimation approaches,
3D U-Net [33], has ∼19,070,000 trainable parameters, which
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are approximately 200× more than that of our proposed FCN
approach.

Overall, we see that our proposed method performs better
in kidney localization and volume estimation on the VGH data
than the KiTS data. The VGH dataset contains mostly healthy
kidneys. As we mentioned in Table II that only 12 patients
out of 100 had a tumor in one of their kidneys. On the other
hand, all 210 patients of KiTS dataset had tumors in either or
both kidneys (see Table III). Thus, KiTS dataset offers more
challenges in image-based computation than that by the VGH
data. This is the plausible reason that our method performs
better on VGH dataset than the KiTS dataset.

VI. CONCLUSION

We proposed a deep learning framework for integrated
kidney localization and volume estimation. Our method is
capable of (i) kidney localization and (ii) segmentation-free
volume estimation from the CT data. Our contribution to
the localization step comprises a novel 3-step CNN-based
architecture. In the first stage, S-CNN helps reduce false
positives in detecting the targeted organ’s bounding box. In the
second stage, a Mask-RCNN operates strictly on the S-CNN

selected slices. Similarly, the Mask-RCNN in the third stage
operates strictly on the sagittal slices falling inside the span
estimated in the second stage. In addition, we designed our
segmentation-free volume estimation task as a 2D patch-based
area prediction problem. Furthermore, we showed that an FCN
performs better than a CNN of similar parameter numbers
in a regression problem. We further derived a mathematical
expression to approximate the volume error metric from the
Sørensen–Dice coefficient. Our experimental results showed
a kidney boundary wall localization error of ∼2.4mm and
a mean volume estimation error of ∼5%, and demonstrated
similar performance to that of recent segmentation-based ap-
proaches but using a simpler deep network. This performance
might be improved further by using more fine-tuned deep
architectures. That being said, the problem of comprehensive
exploration of possible network architectures is beyond the
scope of this work. Our future work envisions including the
neural architecture search (NAS) to find the optimal network
for this work.

We also emphasize that the kidney volume estimation part
of our proposed method does not require segmentation, rather
it requires a ground truth area value per slice, regardless of
how that value was obtained. The area value may have been
obtained via manual segmentation, but conceptually it may
have been obtained without segmentation, e.g., by measuring
some other proxy variables. Besides, we predict the volume
directly in inference, without having to segment. We further
emphasize that the ‘segmentation-free’ term is used in the
literature, e.g., [40]–[49] in the same context as ours (i.e.,
no explicit segmentation is required in training), therefore we
adopt that same established terminology.

Accurate estimation of total kidney volume is often very
crucial, in particular CKD assessment, where the total kidney
volume error needs to be lower than 5% to capture disease
progression, particularly in the early stages. Although our
proposed FCN approach shows an error below 5% for the
VGH data, this dataset contains mostly healthy kidneys. In
addition, our datasets (i.e., VGH and KiTS) do not include
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any pathological cases of ADPKD. Therefore, although our
method performs well on healthy and typical pathological
kidneys (i.e., CKD without major ‘morphological’ changes due
to disease), further studies are needed to validate the efficacy
of the proposed volume estimation method on ADPKD cases.
We also plan to incorporate shape priors into the deep neural
network, which is known to improve organ-related prediction
tasks [59]. We also envision to use the classification and
contrastive semantic alignment (CCSA) loss [60] or domain
invariant representations [61] that aims to learn domain-
invariant features. This approach would allow to learn kidney-
specific features irrespective of the data source, and thus, it
would avoid a deep model being negatively affected by the
domain-specific features. It is also widely accepted that it is
easier to collect healthy data compared to pathological cases.
We also showed in Table IV that cross-domain training testing
leads to worse kidney localization performance when one
domain contains a significant number of pathological kidneys.
Therefore, to address this imbalance in training data, another
possible future direction is to synthesize pathological renal
cases, e.g., as done for lung nodules in [62] and brain tumor
synthesis in [63]. This synthesis approach may enhance the
result of cross-domain training testing.

We discussed in Section V-B that the contour of the Mask-
RCNN generated kidney mask does not follow the exact
kidney cross-section, which results in an overestimation of the
kidney volume. In contrast, our proposed FCN was found to
be better in kidney volume estimation than that by a Mask-
RCNN. However, the accuracy of a kidney mask produced by
the Mask-RCNN can be further improved, which we aim to
investigate in future.

Finally, we envision to incorporate the proposed kidney
localization technique in our future kidney radiomic studies,
as previous deep learning studies of ours [64]–[67], require
kidney localization as a preprocessing step. We believe that
the proposed kidney localization approach would further con-
tribute to improve the outcomes of those studies. Our future
work can also explore the ability of segmentation-free methods
to predict radiomic features, as recently explored by Klyuzhin
et al. [68].

APPENDIX
SØRENSEN–DICE COEFFICIENT TO VOLUME ERROR

APPROXIMATION

We derive the mathematical relation between the volume er-
ror and Sørensen-Dice coefficient to facilitate an approximate
comparison these two metrics. The Sørensen-Dice coefficient
for Boolean data is defined as:

SDice =
2a

2a+ b+ c
, (5)

where a represents true positives, b represents false positives,
and c represents false negatives. The volume error (VE) is
defined as:

VE =

∣∣∣∣ (Vestimated − Vtrue)×��D
Vtrue ×��D

∣∣∣∣ , (6)

where Vestimated and Vtrue are the estimated volume and true
volume of an object, respectively, and D = dax×dco×dsa, and

dax, dco and dsa are the voxel dimensions in the axial, coronal
and sagittal directions, respectively. We can also write (6) in
terms of a, b and c as:

VE =

∣∣∣∣ (a+ b)− (a+ c)

a+ c

∣∣∣∣ . (7)

Now, by rewriting (5), we get,

SDice =
2a

(a+ b)− (a+ c) + 2(a+ c)
. (8)

We further rearrange (8) as:

(a+ b)− (a+ c) =
2a

SDice
− 2(a+ c). (9)

Now, dividing both sides of (9) by (a + c) and taking the
absolute value, we get,∣∣∣∣ (a+ b)− (a+ c)

a+ c

∣∣∣∣ =
∣∣∣∣∣

2a
SDice

− 2(a+ c)

a+ c

∣∣∣∣∣ . (10)

By replacing the left side of (10) as VE from (7), we get:

VE =

∣∣∣∣ 2a

SDice(a+ c)
− 2((((

((SDice(a+ c)

((((
((SDice(a+ c)

∣∣∣∣ . (11)

We see in (5) that when SDice → 1, then the part of denomi-
nator (b+ c)→ 0. Thus, for a state-of-the-art well-performing
segmentation approach, we can assume that a� c. Based on
these assumptions, we can also assume that a ≈ (a+c). Thus,
we can rewrite (11) as:

VE (%) = lim
b→0,c→0

∣∣∣∣ 2

SDice
− 2

∣∣∣∣× 100. (12)
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