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Abstract. This paper introduces the Relational Connectivity Trans-
former (RCT), a novel Graph-Transformer model designed for predicting
absolute and residual full-scale intelligence quotient (FSIQ), performance
IQ (PIQ), and verbal IQ (VIQ) scores from resting-state functional mag-
netic resonance imaging (rs-fMRI) data. Early prediction of neurocogni-
tive impairments via IQ scores may allow for timely intervention. To this
end, our RCT model leverages a relation-learning strategy from paired
sample data via a novel graph-based transformer framework. Through a
comprehensive comparison with state-of-the-art approaches in a 5-fold
cross-validation setup, our model demonstrated superior performance.
Statistical analysis confirmed the significant improvement (p < 0.05) in
FSIQ prediction, strengthening the efficacy of the proposed method. This
work marks the first application of a Graph-Transformer in predicting
IQ scores using rs-fMRI, introducing a novel learning strategy and con-
tributing to the ongoing efforts to enhance the accuracy and reliability
of human intelligence predictions based on functional brain connectivity.
The code is available in this GitHub repository.3
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1 Introduction

Neurocognition encompasses memory, motor control, speech, information pro-
cessing, comprehension, thinking, and reasoning [1]. Intelligence, representing
mental abilities related to neurocognition quality, is influenced by factors like
diseases, treatments, lifestyles, and environmental conditions [2]. Early identifi-
cation of neurocognitive impairments provides a critical window for intervention,
with childhood interventions improving outcomes and adult health gains, includ-
ing enhanced survival, reduced complications, better quality of life, and lower
treatment costs [3,4,5]. Assessing human intelligence aids in predicting neurocog-
nitive outcomes, but current research explains less than 1/3 of the variability [6].

Understanding the neural basis of human intelligence is a key goal in cogni-
tive neuroscience [7]. Human neurocognition heavily relies on brain structure and

3 https://github.com/marafathussain/RelationalConnectivityTransformer
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structural and functional connectivity. While we acknowledge the importance
of the brain’s structure and its connections, we focus on functional connectiv-
ity and investigate its role in predicting neurocognitive outcomes in this study.
Prior studies using brain magnetic resonance imaging (MRI) have linked human
intelligence to the structure and function of different brain regions [8]. Recent re-
search emphasizes the crucial role of interactions within and between functional
brain networks in explaining individual variations in intelligence, particularly
observed during resting-state functional MRI (rs-fMRI) [9,10].

Research has examined the link between brain connectivity and intelligence
quotient (IQ) (review [8]). Also, few studies have predicted neurocognitive scores
utilizing brain connectivity. For instance, Shen et al. [11] used a connectome-
based model to predict brain-behavior relationships. He et al. [12] compared
deep neural networks and kernel regression for predicting behavioral scores. Qu
et al. [13] used a gated graph transformer model for similar predictions. Hanik
et al. [14] was the first to predict general intelligence, specifically full-scale IQ
(FSIQ) and verbal IQ (VIQ), using a regression graph neural network (GNN)
applied to rs-fMRI. However, they did not consider predicting residual IQ scores
that avoid the influence of demographic and socio-economic factors.

Brain connectivity data are structured with nodes and edges. Kawahara et
al. [15] introduced BrainNetCNN, a convolutional neural network (CNN) variant,
to process this data, but CNNs have limitations in the local spatial hierarchy.
To address this, GNN models were developed, representing rs-fMRI-based brain
networks as graphs with ROIs as nodes and functional activation correlations
as edges. FBNetGen [16] used rs-fMRI data to enable learnable brain network
generation. Transformers, with their self-attention mechanisms capturing long-
range dependencies, led to Graph-Transformers, bridging the gap between GNNs
and Transformers [17,18]. Kan et al. [19] proposed a Graph-Transformer vari-
ant, BNT, for rs-fMRI-based disease and sex predictions. However, using Graph-
Transformers for human intelligence prediction with functional brain connectiv-
ity remains unexplored.

Despite the advancements in predicting neurocognitive scores using brain
connectivity, current state-of-the-art (SOTA) models have limitations. They of-
ten overlook the influence of demographic and socio-economic factors on IQ,
and the local spatial hierarchy of CNNs or the limited context-capturing abil-
ity of traditional GNNs restricts their performance. Furthermore, the predictive
power of Graph-Transformers for human intelligence using functional brain con-
nectivity remains underexplored. Our paper addresses these gaps by introducing
the Relational Connectivity Transformer (RCT). This novel Graph-Transformer
model incorporates a pair-wise relation learning strategy to predict absolute
and residual FSIQ, performance IQ (PIQ), and VIQ scores from rs-fMRI data.
Notably, our major contributions are fourfold:

1. It introduces the first Graph-Transformer-based approach for predicting ab-
solute and residual IQ scores using rs-fMRI, addressing gaps in the SOTA by
(a) predicting neurocognitive scores with Graph-Transformers for the first
time, and (b) predicting ‘residual IQ’ scores along with absolute IQ scores.
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2. It pioneers pair-wise relation learning [20] for neurocognitive prediction, pro-
cessing data from two randomly selected subjects to learn relative relation-
ships (i.e., effectively using each other as references) and improve IQ predic-
tion accuracy. This relational learning enhances performance compared to
traditional SOTA methods.

3. It predicts four distinct relations (cumulative, relative, maximal, and mini-
mal) to enhance task-specific learning.

4. The pair-wise input strategy increases the training sample size from n to nPr

(where P denotes permutation, n is the training sample size, and r = 2),
addressing the infeasibility of rs-fMRI data augmentation.

2 Materials and Methods

2.1 Data

We gathered 1,009 rs-fMRI data from the public Autism Brain Imaging Data
Exchange (ABIDE) [21]. After excluding subjects with missing PIQ, VIQ, and
FSIQ scores, N = 809 subjects remained (age: 6-64 years, mean: 16.63±7.26;
male/female: 682/127; Autism Spectrum Disorder (ASD)/neurotypical (NT):
401/408) from 15 sites. The rs-fMRI data were preprocessed using the Con-
figurable Pipeline for the Analysis of Connectomes (CPAC) with brain regions
defined by the Craddock 200 atlas [22], resulting in 200 brain ROIs per sam-
ple. We then computed residual IQ scores (rFSIQ, rPIQ, rVIQ) for all subjects,
considering age, sex, diagnostic group (ASD or NT), and data collection site as
independent variables. The formula used was: rT = T−(α+βA+γS+δD+ηE),
where rT and T represent residual and absolute IQ scores, respectively. The
variables A, S, D, and E correspond to age, sex, diagnostic group, and sample
collection site, respectively. α, β, γ, δ, and η are parameters of linear regression.
A similar approach has been used for residual fluid intelligence estimation [23],
however, unlike [23], our dataset lacks information on parental education and
income. Absolute and residual IQ ranges are [41,180] and [-65,78], respectively.

2.2 Relational Connectivity Transformer (RCT)

Our proposed RCT model (Fig. 1) takes a pair of rs-fMRI inputs (X1 → t1,
X2 → t2), whereX ∈ RP×P , P is the number of brain ROIs, and t1 and t2 are the
ground-truth IQ scores for subjects 1 and 2, respectively. These inputs, X1 and
X2 are functional correlation matrices for subjects 1 and 2, selected randomly
from the data pool, processed in parallel through two backbone transformer
modules. The outputs of backbone modules are subsequently concatenated and
fed to a relational transformer module that predicts four target relations defined
as (1) cumulative relation, r̂1 = t̂1 + t̂2, (2) relative relation, r̂2 = t̂1 − t̂2, (3)
maximal relation, r̂3 = max(t̂1, t̂2), and (4) minimal relation, r̂4 = min(t̂1, t̂2).

Backbone Modules. Our backbone modules process inputs (X1, X2) in
parallel through a L-layer Multi-Head Self Attention (MHSA) mechanisms fol-
lowed by a concatenation defined as:
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Fig. 1. The overall framework of our proposed Relational Connectivity Transformer.
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where Zb
0 = X (omitting subscripts for inputs to avoid complexity), ∥ denotes

concatenation, M b denotes the number of heads in the MHSA, 1 ≤ l ≤ L is
the layer index, W b

Q,l,m, W b
K,l,m, W b

V,l,m, and W b
O,l are learnable query, key,

value, and condensation weight matrices, respectively, and dbK,l,m is the first

dimension of W b
K,l,m matrix. Typically, graph-based deep models require posi-

tional embedding for nodes [17]. For Graph-Transformers, eigen decomposition
is used for positional embedding. However, it is shown in [24,19] that row in-
dexes in a brain network adjacency matrix (rs-fMRI connectivity matrix X of
size P ×P = 200×200 in this study) can sufficiently provide positional informa-
tion for each node, and therefore eigenvalue decomposition becomes redundant.
Furthermore, in Graph-Transformer models, the MHSA mechanism typically
requires combining node positions with the edge weights for attention calcu-
lation. However, it is also shown in [24] for brain networks that incorporating
edge weights into the attention score calculation often degrades performance.
Rather, pairwise dependency (pairwise correlations Xi,j between blood-oxygen-
level-dependent (BOLD) time courses of two ROIs i and j (1 ≤ i, j ≤ 200) in this
study) is shown [19] sufficient for rs-fMRI-based Transformer study. The pooling
function, also called readout, is a key component in graph representation learn-
ing. In this study, we adopted the state-of-the-art orthogonal clustering readout
(OCRead) [19] in the backbone transformer modules (see Fig. 1). OCRead gen-
erates feature map Zb

P by pooling from K clusters of functionally similar nodes
in Zb

L through orthonormal projection.
Relational Module. We concatenate the pooled features from backbone

modules as Z
b∥
P = Zb,1

P ∥ Zb,2
P (see Fig. 1). Afterward, our relational module pro-

cesses the combined feature map Z
b∥
P through a single layer MHSA mechanism
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followed by a concatenation defined as:
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where Mr denotes the number of heads in the MHSA, W r
Q,m, W r

K,m, W r
V,m,

and W r
O are learnable query, key, value, and condensation weight matrices, re-

spectively, and drK,m is the first dimension of W r
K,m matrix. Finally, we flat the

feature matrix Zr and feed to a fully connected layer that generates four predic-
tions r̂1, r̂2, r̂3, and r̂4. We use the mean square error (MSE) loss to train our

RCT model defined as LMSE = 1
4

∑4
k=1(rk − r̂k)

2, where actual target relations
are defined as r1 = t1 + t2, r1 = t1 − t2, r3 = max(t1, t2), and r4 = min(t1, t2).

Implementation Details. In our backbone modules, we employ two MHSA
layers (L = 2), and in the relational module, a single MHSA layer is used. The
parameters M b = 4 and Mr = 8 are set for the backbone and relational mod-
ules, respectively. OCRead pooling is conducted with K = 10 clusters, following
the recommendation for the ABIDE rs-fMRI dataset in [19]. Xavier uniform
initialization [25] initializes K orthonormal bases as cluster centers. The pro-
posed method is evaluated using 5-fold cross-validation. For training, the Adam
optimizer is employed with an initial learning rate of 0.0001, weight decay of
0.0001, and a batch size of 16. The original training sample size n is significantly
increased through sample permutation nP2 due to the input design. This aug-
mentation exposes our model to numerous input combinations within a single
epoch, leading to saturation of validation loss and accuracy within 10 epochs.
Consequently, we set the epoch to 15. We also ensure that our training and val-
idation data remain distinct throughout the permutation process. Our models
are implemented in PyTorch version 1.12.1 and Python version 3.9, and training
is conducted on an Intel E5-2650 v4 Broadwell 2.2 GHz processor, an Nvidia
Titan RTX GPU with 24 GB of VRAM, and 16 GB of RAM.

3 Results

We estimate target IQ scores t̂1 and t̂2 from the predicted relations r̂1, r̂2, r̂3,
and r̂4 for an input pair (X1, X2) as t̂1 = (r̂1 + r̂2)/2; t̂2 = (r̂1 − r̂2)/2; t̂1 = r̂3
if r̂2 > 0 else r̂4; and t̂2 = r̂4 if r̂2 > 0 else r̂3. Since there are two estimates of
t̂1 and t̂2 for each input pair (X1, X2), we estimate the average of t̂1 pairs and
t̂2 pairs as final predicted scores. For evaluating the prediction performance, we
use mean absolute error (MAE) as 1

V

∑V
k=1 |qk − q̂k|, mean absolute percent-

age error (MAPE) as 1
V

∑V
k=1(|qk − q̂k|/|qk|), and mean square error (MSE) as

1
V

∑V
k=1(qk− q̂k)

2, where V is the total number of predictions during validation,
q is the ground-truth IQ score, and q̂ is the predicted IQ score.

3.1 Ablation Study

To choose the optimal configuration for our RCT, we tested four configurations
(architectures 1-4) shown in Fig. 2(a)-(d). Architecture 1 has shared backbone
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Fig. 2. Graph-Transformer architectures used in ablations studies: Architectures (a)
1, (b) 2, (c) 3, and (d) 4 (details in main texts). Colors are used in different blocks to
correspond to respective colored blocks in Fig. 1.

Models Architecture 1 Architecture 2 Architecture 3 Architecture 4

Target FSIQ rFSIQ FSIQ rFSIQ FSIQ rFSIQ FSIQ rFSIQ

Fold 1 9.99±7.70 10.49±8.41 10.72±8.25 10.62±7.88 10.50±7.88 10.84±8.57 10.61±7.98 10.23±7.79
Fold 2 11.70±9.93 12.48±10.80 11.89±10.06 12.10±10.46 11.65±9.98 12.35±10.28 11.63±9.74 12.23±9.94
Fold 3 11.93±8.31 12.28±9.17 11.63±8.24 11.71±8.27 11.83±8.40 11.81±8.42 12.15±8.27 11.93±8.60
Fold 4 12.01±10.09 12.20±9.53 12.46±10.31 11.67±9.83 12.33±9.84 12.12±9.97 12.46±10.15 12.07±9.83
Fold 5 10.90±7.42 11.74±8.44 10.68±7.51 11.28±7.92 10.71±7.24 11.05±7.67 10.87±7.95 11.43±7.95

Target PIQ rPIQ PIQ rPIQ PIQ rPIQ PIQ rPIQ

Fold 1 12.17±9.10 11.81±9.25 11.78±8.92 11.85±8.73 11.64±8.93 12.16±9.26 12.62±9.39 12.08±9.04
Fold 2 12.32±10.65 12.44±10.89 12.30±10.82 13.04±10.92 12.30±10.59 12.80±10.99 12.14±10.49 12.86±11.09
Fold 3 12.36±9.90 13.01±10.60 12.76±9.45 12.49±9.53 12.23±8.97 12.76±9.64 12.63±9.48 12.55±9.38
Fold 4 13.26±10.19 12.14±9.18 12.38±9.80 11.82±9.64 12.39±9.70 12.06±9.52 12.21±9.62 12.23±9.37
Fold 5 10.80±8.79 11.31±8.82 10.63±9.02 11.65±8.71 10.75±8.69 11.02±8.93 10.85±8.99 10.94±8.65

Target VIQ rVIQ VIQ rVIQ VIQ rVIQ VIQ rVIQ

Fold 1 11.31±9.49 11.55±9.09 10.86±9.12 11.39±9.07 10.97±8.99 11.08±8.88 11.35±9.18 11.52±9.16
Fold 2 13.71±11.60 12.73±10.43 13.16±10.55 12.44±10.23 12.44±10.02 12.61±10.57 12.41±9.61 12.90±10.12
Fold 3 13.27±10.32 13.91±10.80 13.12±9.85 13.32±10.20 13.10±10.15 13.39±10.10 13.70±9.65 13.48±10.28
Fold 4 14.62±11.01 13.71±11.26 14.03±10.97 13.76±11.27 14.12±10.83 12.06±9.52 13.60±11.10 13.55±10.77
Fold 5 11.60±8.86 12.31±9.65 11.48±8.80 12.12±9.37 11.51±8.58 12.80±8.93 11.50±8.68 12.19±9.33

Mean 12.19 12.03 11.98 12.10

Table 1. Absolute and residual IQ prediction performance in terms of MAE by four
different architectures used in our ablation study (see Fig. 2).

modules (same learnable weights) for input pairs, with one MHSA and four fully
connected layers (labeled as ‘Linear’) in the relational module. Architecture 2
has independent backbone modules (different learnable weights) for input pairs,
with the same relational module as Architecture 1. Architecture 3 has indepen-
dent backbone modules and a relational module with one MHSA and two fully
connected layers. Architecture 4 has independent backbone modules and a rela-
tional module with no MHSA but four fully connected layers. We evaluated these
architectures using 5-fold cross-validation, and the MAE results in Table 1 show
that Architecture 3 has the lowest mean MAE. Thus, we selected Architecture
3 as the optimal configuration for our proposed RCT model (Fig. 1).

Justification of our Ablation Study Design. The ablation study in this
work employs 5-fold cross-validation on the same dataset used for reporting
results to determine the optimal deep transformer architecture among four dif-
ferent configurations. Cross-validation was chosen to maximize the robustness
and generalizability of model performance by evaluating the model across multi-
ple data splits, thereby reducing the risk of overfitting. Although an independent
validation set is often preferred for hyperparameter tuning, cross-validation al-
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lows the entire dataset to contribute to both training and validation, enhancing
the reliability of performance metrics.

Insight into Architecture 3’s Performance.Architecture 3 demonstrates
the lowest mean MAE, likely due to its balanced complexity and ability to cap-
ture intricate patterns in the rs-fMRI data. The use of independent backbone
modules enables the model to learn distinct features from input pairs, enhancing
its capacity to represent complex relationships inherent in functional connectiv-
ity data. Additionally, the relational module’s structure, consisting of one MHSA
layer and two fully connected layers, provides an optimal balance between cap-
turing global dependencies and maintaining sufficient model capacity without
overfitting. This configuration likely allows Architecture 3 to effectively model
the nuanced and high-dimensional nature of rs-fMRI data, leading to superior
predictive performance.

3.2 Comparison to State-of-the-art

To compare absolute and residual IQ prediction performance by the proposed
RCT method with state-of-the-art approaches, we implemented a CNN-based
graph representation learning approach BrainNetCNN [15], a task-specific graph
generation-based GNN approach FBNetGen [16], a conventional graph trans-
former approach Graphormer [17], and a rs-fMRI-tailored Graph-Transformer
approach BNT [19]. We ran all these methods for 200 epochs in a 5-fold cross-
validation setup. We used conventional single-input single-target (X → t) feed-
forward settings for these approaches and adhered to their authors-suggested
hyperparameter settings. For the proposed approach, we tested two prediction
scenarios: (1) both validation inputs are the same (i.e., from the same subject,
X1 = X2), and (2) validation input pairs are mixed, i.e., X1=X2; X1 ̸= X2. We
present absolute and residual IQ prediction performance by different approaches
in Tables 2 and 3, respectively, in terms of MAE, MAPE, and MSE. In both
tables, we observe that the proposed RCT approach consistently exhibits the
lowest absolute and residual FSIQ, PIQ, and VIQ prediction errors. However,
it is noteworthy that the lowest MAE, MAPE, and MSE are not consistently
associated with a specific input scenario; rather, the best performance varies
between the scenarios X1 = X2 and X1 = X2; X1 ̸= X2. In addition, we tested
the statistical significance in prediction errors by the proposed RCT approach
for X1 = X2 (to be fair with state-of-the-art) and by the best-performing state-
of-the-art approach (i.e., FBNetGen in Table 2, and BrainNetCNN in Table 3).
We found that the 2-tailed t-test on absolute error and absolute percentage er-
ror by the RCT and FBNetGen methods for the FSIQ score is significant for
p < 0.05 (see Table 2). So, we can assume that the performance of the proposed
RCT approach will also be statistically better than other approaches because
other state-of-the-art performed worse than the FBNetGen method in absolute
FSIQ prediction. This finding is also significant because the FSIQ score is a
factor-weighted combination of the PIQ and VIQ scores [8].
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Methods Target Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

BrainNetCNN [15]

FSIQ
MAE ↓ 18.55±14.10 20.85±15.20 22.43±14.15 20.55±14.80 21.17±15.01 20.71
MAPE ↓ 0.17±0.13 0.20±0.14 0.21±0.13 0.19±0.13 0.18±0.12 0.19
MSE ↓ 543.1±706.6 666.0±896.7 703.5±725.4 641.6±856.1 673.7±827.1 645.6

PIQ
MAE ↓ 19.43±14.45 21.14±15.54 21.76±14.23 19.77±15.12 20.93±14.95 20.61
MAPE ↓ 0.18±0.14 0.20±0.16 0.20±0.13 0.19±0.14 0.19±0.14 0.19
MSE ↓ 586.8±755.3 688.8±915.9 676.2±844.8 619.6±914.8 661.9±825.0 646.7

VIQ
MAE ↓ 19.44±14.22 21.46±16.21 22.89±15.55 20.88±15.71 21.66±16.38 21.27
MAPE ↓ 0.18±0.13 0.20±0.17 0.21±0.14 0.20±0.14 0.19±0.15 0.17
MSE ↓ 581.3±770.0 723.7±973.8 766.3±967.0 683.1±969.1 738.1±921.2 698.5

FBNetGen [16]

FSIQ
MAE ↓ 11.78±8.55 12.21±9.74 12.56±8.51 12.43±10.38 12.41±8.16 12.28
MAPE ↓ 0.12±0.09 0.13±0.16 0.12±0.09 0.12±0.11 0.11±0.07 0.12
MSE ↓ 212.0±260.8 244.8±444.3 230.3±272.4 262.6±403.8 220.7±256.3 234.1

PIQ
MAE ↓ 12.58±9.44 12.10±9.91 12.96±9.63 12.34±9.63 11.91±8.61 12.38
MAPE ↓ 0.13±0.11 0.13±0.17 0.13±0.11 0.12±0.11 0.11±0.09 0.13
MSE ↓ 247.5±339.4 244.6±459.5 260.6±369.8 245.1±372.5 215.8±264.1 242.7

VIQ
MAE ↓ 12.19±9.40 12.56±10.68 13.58±9.06 13.68±11.30 12.93±8.98 12.99
MAPE ↓ 0.18±0.13 0.20±0.17 0.21±0.14 0.20±0.14 0.19±0.15 0.19
MSE ↓ 237.2±376.5 272.0±498.4 266.4±315.9 314.9±530.8 248.0±298.0 267.7

Graphormer [17]

FSIQ
MAE ↓ 13.10±9.93 13.70±10.30 13.93±10.14 14.80±11.01 12.91±8.56 13.69
MAPE ↓ 0.13±0.11 0.14±0.15 0.13±0.10 0.15±0.12 0.12±0.08 0.14
MSE ↓ 270.3±380.4 294.0±465.6 296.8±380.0 340.3±448.8 239.8±276.6 288.2

PIQ
MAE ↓ 15.33±11.17 14.52±11.04 14.72±11.07 13.62±11.16 13.49±10.02 14.34
MAPE ↓ 0.16±0.14 0.15±0.17 0.15±0.13 0.14±0.13 0.13±0.11 0.15
MSE ↓ 359.9±519.0 332.8±518.4 339.5±482.5 310.0±468.8 282.5±384.1 324.9

VIQ
MAE ↓ 13.14±10.39 13.99±11.51 15.18±12.02 16.45±12.50 13.47±9.30 14.45
MAPE ↓ 0.13±0.14 0.14±0.16 0.15±0.13 0.17±0.15 0.12±0.08 0.14
MSE ↓ 280.7±446.6 328.4±528.7 375.3±576.3 427.1±687.8 267.9±371.1 335.9

BNT [19]

FSIQ
MAE ↓ 11.96±9.52 12.80±10.41 13.49±8.60 13.59±10.35 11.89±8.15 12.75
MAPE ↓ 0.12±0.11 0.13±0.16 0.13±0.11 0.11±0.07 0.14±0.14 0.16
MSE ↓ 233.7±319.9 272.5±488.5 255.9±310.7 291.9±428.3 207.9±248.9 252.38

PIQ
MAE ↓ 13.70±10.83 13.28±11.48 13.75±10.67 13.03±11.25 12.77±9.75 13.31
MAPE ↓ 0.14±0.14 0.14±0.19 0.13±0.12 0.13±0.12 0.12±0.10 0.13
MSE ↓ 305.1±459.1 308.3±564.3 303.2±456.1 296.3±476.9 258.0±385.0 294.2

VIQ
MAE ↓ 12.11±9.68 13.93±10.83 14.48±10.77 15.11±12.35 12.57±9.76 13.64
MAPE ↓ 0.12±0.12 0.14±0.15 0.14±0.12 0.15±0.14 0.11±0.09 0.13
MSE ↓ 240.5±361.9 311.3±474.5 325.7±475.9 380.9±717.1 253.5±379.8 302.38

Proposed RCT
(X1=X2)

FSIQ
MAE ↓ 10.37±7.75 11.55±9.89 11.77±8.36 12.24±9.79 10.63±7.19 11.31**
MAPE ↓ 0.05±0.04 0.06±0.08 0.05±0.04 0.06±0.05 0.04±0.03 0.05**
MSE ↓ 172.9±238.5 234.9±488.5 210.6±263.4 249.3±359.8 167.4±197.7 207.0

PIQ
MAE ↓ 11.59±8.92 12.18±10.55 12.22±8.89 12.20±9.69 10.69±8.63 11.77
MAPE ↓ 0.06±0.05 0.06±0.09 0.05±0.04 0.06±0.05 0.05±0.04 0.06
MSE ↓ 215.8±307.2 262.7±583.4 230.6±329.8 247.8±346.1 191.3±293.1 229.6

VIQ
MAE ↓ 10.77±8.93 12.39±9.96 12.94±10.14 14.07±10.72 11.49±8.49 12.33
MAPE ↓ 0.05±0.06 0.06±0.07 0.06±0.07 0.07±0.06 0.05±0.04 0.06
MSE ↓ 201.6±346.2 254.9±411.6 274.9±438.0 317.6±535.5 206.6±297.5 251.1

Proposed RCT
(X1=X2,
X1 ̸= X2)

FSIQ
MAE ↓ 10.50±7.88 11.65±9.98 11.83±8.40 12.33±9.85 10.71±7.24 11.40
MAPE ↓ 0.10±0.09 0.12±0.16 0.11±0.08 0.12±0.10 0.09±0.06 0.12
MSE ↓ 172.5±238.3 235.7±490.9 210.7±263.2 249.1±359.2 167.2±196.7 207.0

PIQ
MAE ↓ 11.64±8.93 12.29±10.59 12.23±8.97 12.39±9.70 10.75±8.69 11.86
MAPE ↓ 0.12±0.11 0.13±0.19 0.11±0.10 0.12±0.11 0.10±0.09 0.12
MSE ↓ 215.3±306.4 263.5±584.6 230.3±329.2 247.6±345.5 191.1±293.1 229.6

VIQ
MAE ↓ 10.97±8.99 12.44±10.02 13.10±10.14 14.12±10.83 11.51±8.58 12.43
MAPE ↓ 0.11±0.11 0.12±0.14 0.13±0.11 0.14±0.13 0.10±0.08 0.12
MSE ↓ 201.3±348.3 255.2±411.4 274.7±437.0 316.8±535.5 206.2±296.8 250.8

Table 2. Comparison of absolute IQ prediction performance. Bold red fonts denote
the lowest mean error per IQ category. The blue font represents the second-lowest mean
error. **differences are significant for p < 0.05.

4 Discussion

Justification for Mixing ASD and NT data. In our study, we chose to com-
bine data from both ASD and NT subjects for predicting IQ scores. This decision
was driven by several factors: (1) Minimal Difference in IQ Scores: The
differences in actual IQ scores between ASD and NT subjects are relatively small
compared to the typical error margins reported in SOTA (e.g., [14]) predictive
models. As shown in Table 4, the absolute differences (|∆|) between means of
different IQ types for ASD and NT groups are <7 points, whereas the MAE in
SOTA models, including our results, is >9 points. This indicates that the vari-
ance between the actual IQs of ASD and NT subjects is less significant than the
prediction error margin, making it less impactful in the context of our model’s
performance. (2) Aim to Improve Overall Predictive Accuracy : The pri-
mary objective of our research is to reduce the gap between actual and predicted
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Methods Target Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

BrainNetCNN [15]

rFSIQ
MAE ↓ 10.32±7.63 12.65±9.51 11.70±7.84 12.76±9.97 11.41±7.38 11.76
MAPE ↓ 2.35±6.49 6.00±7.05 4.01±3.32 4.15±23.05 2.02±0.25 3.71
MSE ↓ 164.8±230.5 326.2±395.4 198.4±239.9 337.8±376.2 184.7±221.1 242.4

rPIQ
MAE ↓ 11.37±8.52 13.75±9.93 12.24±9.12 12.01±9.17 12.13±7.83 12.30
MAPE ↓ 3.98±29.87 3.99±0.10 3.09±0.93 2.80±8.37 3.00±0.09 3.40
MSE ↓ 302.0±389.5 236.5±439.4 233.2±323.7 228.5±319.7 385.3±444.8 277.1

rVIQ
MAE ↓ 12.80±9.04 12.16±10.13 12.46±8.69 13.22±10.73 12.88±8.56 12.71
MAPE ↓ 3.80±4.63 2.16±12.33 3.08±3.68 4.42±23.67 3.00±3.09 3.29
MSE ↓ 198.5±341.5 250.5±428.3 231.1±275.3 290.1±508.6 214.6±281.3 237.0

FBNetGen [16]

rFSIQ
MAE ↓ 10.41±8.18 12.86±9.63 12.72±7.96 12.38±9.70 11.81±9.57 12.04
MAPE ↓ 2.06±9.29 2.05±0.39 2.67±5.51 22.19±245.15 1.42±3.24 6.10
MSE ↓ 175.4±251.8 233.5±391.8 200.9±243.2 247.5±369.4 297.0±234.9 230.6

rPIQ
MAE ↓ 12.67±8.99 12.00±9.66 12.95±9.39 12.10±9.26 12.02±7.84 12.35
MAPE ↓ 4.54±16.55 2.39±2.65 2.98±4.29 3.14±3.59 3.06±3.50 3.22
MSE ↓ 217.2±312.9 237.4±419.4 246.3±345.1 232.2±324.5 383.0±440.5 263.2

rVIQ
MAE ↓ 12.85±9.26 13.28±10.04 12.57±8.74 13.30±11.03 12.01±8.75 12.80
MAPE ↓ 3.39±3.73 3.33±4.22 3.05±3.65 3.33±3.89 3.10±3.57 3.24
MSE ↓ 283.8±346.4 251.8±415.8 234.5±278.9 298.7±559.5 321.0±395.9 277.9

Graphormer [17]

rFSIQ
MAE ↓ 11.43±8.44 12.64±10.28 13.49±9.10 13.23±10.34 12.91±8.63 12.74
MAPE ↓ 7.20±51.38 2.15±5.41 3.35±18.15 4.70±30.80 2.57±5.86 3.99
MSE ↓ 202.0±263.6 265.6±430.8 264.7±332.8 282.0±399.4 241.3±287.3 251.1

rPIQ
MAE ↓ 12.93±9.96 13.03±11.22 13.51±10.65 13.43±10.68 12.10±9.06 13.00
MAPE ↓ 2.80±11.97 3.67±8.12 3.70±2.36 4.98±41.85 2.23±4.29 3.48
MSE ↓ 266.6±377.1 295.9±555.1 296.1±480.7 294.5±425.5 228.7±425.5 276.4

rVIQ
MAE ↓ 11.75±8.85 13.68±10.87 14.63±10.54 14.22±11.92 13.61±10.61 13.58
MAPE ↓ 5.17±37.65 5.86±35.00 3.75±21.08 6.59±42.95 2.98±13.17 4.87
MSE ↓ 216.5±312.7 305.5±459.4 325.3±476.0 344.4±624.8 298.1±453.1 297.9

BNT [19]

rFSIQ
MAE ↓ 11.49±7.99 12.98±10.06 12.23±8.35 12.74±9.72 11.17±8.10 12.12
MAPE ↓ 4.21±24.12 3.89±4.68 2.54±13.01 4.12±23.23 3.02±4.50 3.56
MSE ↓ 174.1±245.3 244.8±449.3 219.3±272.6 232.5±357.0 290.5±253.2 232.2

rPIQ
MAE ↓ 11.83±8.70 12.81±10.82 12.85±9.25 12.17±9.38 12.17±8.95 12.37
MAPE ↓ 3.85±3.88 2.95±3.66 3.65±2.56 2.43±10.94 3.68±2.44 3.31
MSE ↓ 275.7±304.2 281.5±556.4 250.6±344.3 236.3±345.5 285.0±321.5 265.8

rVIQ
MAE ↓ 11.49±8.68 12.67±10.74 13.53±9.95 13.34±10.96 12.31±9.10 12.67
MAPE ↓ 4.57±26.14 4.02±15.71 2.47±6.82 5.89±40.59 2.16±5.31 3.82
MSE ↓ 207.5±319.7 276.0±478.8 282.2±433.6 298.2±559.0 234.4±344.2 259.7

Proposed RCT
(X1=X2)

rFSIQ
MAE ↓ 10.60±8.38 12.10±10.14 11.75±8.38 11.95±9.89 10.94±7.51 11.46
MAPE ↓ 2.30±13.31 0.99±2.46 1.18±4.63 2.97±22.24 0.94±2.55 1.67
MSE ↓ 191.3±282.2 259.1±463.9 210.7±277.8 247.2±372.1 181.1±232.4 217.8

rPIQ
MAE ↓ 11.99±9.07 12.58±10.88 12.50±9.43 11.91±9.41 10.84±8.70 11.96
MAPE ↓ 2.25±12.87 1.30±3.67 0.80±1.18 1.19±6.01 0.84±1.43 1.27
MSE ↓ 234.5±357.6 285.3±569.5 255.8±352.3 237.0±349.5 200.5±324.2 242.6

rVIQ
MAE ↓ 10.65±9.94 12.10±9.70 12.30±10.24 13.07±11.72 11.25±9.45 11.87
MAPE ↓ 2.55±16.14 3.02±12.71 2.40±7.82 3.89±30.59 2.16±7.35 2.80
MSE ↓ 202.7±314.5 204.9±390.6 224.7±408.1 305.7±430.5 201.5±290.2 227.9

Proposed RCT
(X1=X2,
X1 ̸= X2)

rFSIQ
MAE ↓ 10.84±8.57 12.35±10.29 11.81±8.43 12.13±9.97 11.05±7.68 11.63
MAPE ↓ 4.73±32.55 2.17±5.32 2.47±10.11 6.10±44.45 2.13±8.47 3.52
MSE ↓ 191.1±281.3 258.5±465.4 210.7±277.5 246.6±370.7 181.3±233.2 217.6

rPIQ
MAE ↓ 12.16±9.26 12.80±11.01 12.76±9.64 12.06±9.53 11.02±8.93 12.16
MAPE ↓ 7.06±62.08 2.71±8.05 1.78±3.20 2.49±12.36 1.74±3.07 3.15
MSE ↓ 233.9±357.2 285.3±572.2 256.0±351.7 236.5±349.9 201.3±325.0 242.6

rVIQ
MAE ↓ 11.08±8.88 12.61±10.57 13.39±10.10 12.06±9.52 12.80±8.93 12.58
MAPE ↓ 3.39±14.92 4.68±24.51 2.22±6.31 2.67±5.31 2.14±7.50 3.02
MSE ↓ 201.7±329.3 271.0±464.5 281.5±444.6 205.5±314.5 203.2±291.5 232.5

Table 3. Comparison of residual IQ prediction performance. Bold red fonts denote
the lowest mean error per IQ category. The blue font represents the second-lowest error.

IQ scores. By focusing on improving the overall predictive accuracy, regardless
of the subject group, we aim to enhance the robustness and applicability of
our model. The inclusion of both ASD and NT subjects helps in training a more
generalized model that can potentially perform well across different populations.
(3) Homogeneous Preprocessing and Residual Scores: Our preprocess-
ing pipeline and the calculation of residual IQ scores (rFSIQ, rPIQ, rVIQ) were
designed to account for age, sex, diagnostic group (ASD or NT), and collection
site as independent variables. This approach normalizes the data across these
factors, ensuring that our predictions are not biased by group-specific variations
and focusing on the inherent relationship between the brain connectivity fea-
tures and IQ scores. (4) Relevance to Broader Applications: Combining
ASD and NT data allows our model to apply to a wider range of clinical and
research settings where mixed populations are common. This enhances the prac-
tical utility of our findings, as models trained on mixed data are likely to be
more adaptable and effective in diverse real-world scenarios.
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FSIQ rFSIQ PIQ rPIQ VIQ rVIQ

ASD 105.92±16.10 0.067±15.40 105.87±16.63 0.007±15.99 105.58±16.75 -0.002±16.25

NT 111.00±12.19 0.005±11.71 108.32±13.00 0.009±12.50 112.01±12.88 0.041±12.54

|∆| 5.08 0.062 2.45 0.002 6.43 0.043

Table 4. Absolute differences (|∆|) between means of different IQ types for ASD and
NT subject groups in the ABIDE dataset.

Novelty of the Proposed Approach. The key novelty of our approach can
be summarized as: (1) Advancement Over Existing Methodologies: The
introduction of our RCT significantly advances existing methodologies, address-
ing unique challenges in predicting IQ scores from rs-fMRI data. (2) Innovative
Relational Module Design : While MHSA and linear layers have been used
in other contexts, our relational module is designed to capture intricate pairwise
relationships between brain regions across subjects, crucial for accurate cognitive
predictions. Unlike traditional graph transformers that focus on node-level at-
tention, our approach emphasizes relational dynamics between regions, drawing
from relational modeling in neural networks [20]. (3) Novelty in Relational
Learning Across Subjects: Our model introduces relational learning across
subjects, leveraging subject-to-subject variability to improve predictive perfor-
mance and enhance model generalizability. (4) Task-Specific Learning with
Distinct Relations: Predicting distinct relations (cumulative, relative, maxi-
mal, and minimal) within brain connectivity enhances task-specific learning in
neurocognition prediction, providing a richer understanding of the brain’s func-
tional architecture and improving predictive accuracy. (5) Pair-Wise Input
Strategy and Increased Sample Size : Our pair-wise input strategy enables
training with a larger sample size (from n to nP2, improving model robustness
and performance by multiplying training examples in the rs-fMRI context. (6)
Novel Application to IQ Prediction : Although graph transformers have
been applied to other rs-fMRI-based predictions like disease and sex classifica-
tion [19], our work is the first to adapt this technology for IQ score prediction,
filling a critical gap in the literature and demonstrating the versatility and ro-
bustness of graph transformers in a new domain. (7) Foundation for Future
Research : By focusing on IQ prediction, our study broadens the scope of graph
transformer applications and provides a foundation for future research in neu-
rocognitive assessments.

Limitations and Future Work.Our method shows promise but has limita-
tions. The dataset is small with 809 subjects, though data permutation enhances
sample size. We aim to increase diversity with more varied data from diverse
backgrounds. The absence of some socioeconomic factors limits their inclusion
in residual IQ estimation. Additionally, we focus solely on functional connectiv-
ity. Future research will integrate structural and diffusion MRI biomarkers for a
more comprehensive prediction of neurocognitive outcomes.
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5 Conclusion

We introduced the RCT, a novel Graph-Transformer model that leverages a
pair-wise relation learning strategy for enhanced prediction of neurocognitive
outcomes in terms of IQ scores. Our model demonstrated superior performance
compared to SOTA approaches in a 5-fold cross-validation setup. The statistical
significance (for p < 0.05) of the differences in prediction errors for absolute
FSIQ strengthens the efficacy of the RCT approach. The incorporation of four
different relations as targets further enhances the robustness of our task-specific
learning. This work represents the first application of a Graph-Transformer for
predicting neurocognitive outcomes using rs-fMRI and introduces a novel pair-
wise relation learning strategy to the field, paving the way for more accurate and
reliable predictions of human intelligence based on functional brain connectivity.
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