ImHistNet: Learnable Image Histogram Based
DNN with Application to Noninvasive
Determination of Carcinoma Grades in CT Scans

Mohammad Arafat Hussain', Ghassan Hamarneh?, and Rafeef Garbi'

! BiSICL, University of British Columbia, Vancouver, BC, Canada
2 Medical Image Analysis Lab, Simon Fraser University, Burnaby, BC, Canada
{arafat,rafeef}Qece.ubc.ca, hamarneh@sfu.ca

Abstract. Renal cell carcinoma (RCC) is the seventh most common
cancer worldwide, accounting for an estimated 140,000 global deaths an-
nually. Clear cell RCC (ccRCC) is the major subtype of RCC and its
biological aggressiveness affects prognosis and treatment planning. An
important ccRCC prognostic predictor is its ‘grade’ for which the 4-
tiered Fuhrman grading system is used. Although the Fuhrman grade
can be identified by percutaneous renal biopsy, recent studies suggested
that such grades may be non-invasively identified by studying image tex-
ture features of the ccRCC from computed tomography (CT) data. Such
image feature based identification currently mostly relies on laborious
manual processes based on visual inspection of 2D image slices that are
time-consuming and subjective. In this paper, we propose a learnable
image histogram based deep neural network approach that can perform
the Fuhrman low (I/II) and high (III/IV) grade classification for ccRCC
in CT scans. Validated on a clinical CT dataset of 159 patients from the
TCIA database, our method classified ccRCC low and high grades with
80% accuracy and 85% AUC.

1 Introduction

Renal cell carcinoma (RCC) is the seventh most common cancer accounting
for an estimated 140,000 global deaths annually [1]. Clear cell RCC (ccRCC)
accounts for approximately 80% of RCC [2] and its biological aggressiveness
affects the prognosis and treatment planning [3]. The ‘grade’ of a ccRCC is one
of the important prognostic predictors of 5-year survival where higher grade
tumors have an elevated risk of postoperative recurrence [2]. Although the 4-
tiered Fuhrman grading system (FGS) [4] is used for ccRCC grading, in current
clinical practice, a simplified 2-tiered FGS that reduces variability and improves
reproducibility of the tumor grade is preferred by pathologists [1,2,3]. The 2-
tier FGS, which divides grades to low grade (Fuhrman I/II) and high grade
(Fuhrman III/IV), was shown to be as effective as 4-tiered FGS in predicting
cancer-specific mortality in a study population of 2,415 ccRCC patients [5].
Clinically, invasive percutaneous renal biopsy is currently used for ccRCC
FGS [1]. However, inter-observer reproducibility of grades assigned by patholo-
gists ranges from 31.3% to 97% [1]. Oh et al. [6] tried to assess the correlation
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between the CT features and Fuhrman grade of ccRCC, where ccRCCs were ret-
rospectively reviewed in consensus by two radiologists. Using logistic regression,
they showed a threshold tumor size of 36 mm to predict (AUC: 70%) the high
Fuhrman grade. Recently, Sasaguri et al. [7] suggested that RCCs can be charac-
terized and graded based on CT textural features. Ding et al. [1] employed logis-
tic regression on both non-textural features, e.g. pseudocapsule, round mass, as
well as textural ones, e.g. histogram, gray-level co-occurrence matrices (GLCM),
gray level run length matrix (GLRLM), and reported that textural features bet-
ter discriminated high from low grade ccRCC. Shu et al. [2] also employed lo-
gistic regression on CT textural features, e.g. GLCM, GLRLM, gray level size
zone matrix (GLSZM), and achieved an FGS accuracy of 77%. Huhdanpaa et
al. [8] used histogram analysis of the peak tumor enhancement, tumor hetero-
geneity and percent contrast washout in CT, and reported these parameters to
be statistically different between low and high grade ccRCC.

Current textural feature identification and quantification nonetheless faces
two main challenges: it requires (1) ccRCC segmentation in CT, and (2) manual
feature engineering. To our knowledge, there is no automatic ccRCC segmenta-
tion method present for CT. On the other hand, manual tumor segmentation
relying on human visual inspection for feature identification is laborious, time
consuming, and suffers from high intra/inter-observer variability [9].

Avoiding complex manual feature engineering, supervised deep learning using
convolutional neural networks (CNN) have exploded in popularity for automatic
feature learning, classification, as well as localization and dense labelling. In a
classical CNN, the learned features in the first layer typically capture low level
features such as edges, the second layer detects motifs by spotting particular
arrangements of edges, the third layer assembles motifs into larger combinations
representing parts of objects, and subsequent layers detect objects as combina-
tions of these parts [10]. These features of a classical CNN tend to ignore diffuse
textural features [11] that are often important for medical imaging applications,
e.g. tumor characterization and analysis. In an attempt to learn textural features
via CNNs, Andrearczyk et al. [11] proposed deploying a global average pooling
over each feature map of the last convolution layer of a conventional CNN to
make the model object-shape unaware. However, the pooling still operates on
the learned object-edge/motifs that do not capture complex and subtle textural
variation in the input image. In a recent study [12], Wang et al. proposed an
approach to learn histograms that back-propagates errors to learn optimal bin
centers and widths during training. Wang’s approach has 2-stages: in stage 1, a
conventional CNN learns the appearance feature maps followed by producing a
class-likelihood (for classification) or likelihood-map (for segmentation). A learn-
able histogram is subsequently trained on the stage-1 likelihood estimates, and
the resultant features of this histogram are concatenated with the appearance
features learned in stage-1. The combined appearance plus histogram features
are then used to produce a fine-tuned stage-2 likelihood-map/class-likelihood
which resulted in a slightly better (1.9%) prediction accuracy.
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Inspired by Wang’s approach, which was designed to learn histograms of
likelihood-maps (for segmentation) or class-likelihoods (for classification) gen-
erated by a conventional CNN, we propose ImHistNet, a deep neural network
(DNN) for end to end texture-based image classification. Our proposed work
makes the following contributions: (1) we modify the learnable histogram ap-
proach by Wang et al. [12] into a learnable image histogram (LIH) layer within
a DNN framework capable of learning complex and subtle task-specific textural
features from raw images directly, adhering to the classical input-output map-
ping of a CNN; (2) we remove the requirement for fine pre-segmentation of the
ccRCC as the proposed learnable image histogram can stratify tumor and back-
ground textures well thus enabling the model to focus specifically on the tumor
texture; (3) we demonstrate ImHistNet’s capabilities by performing automatic
ccRCC grade classification for the 2-tiered FGS on an extended clinical dataset
from real patients.

2 Materials and Methods

2.1 Data

We used CT scans of 159 patients from The Cancer Imaging Archive (TCIA)
database [13]. These patients were diagnosed with ccRCC, of which 64 were
graded Fuhrman low (I/II) and 95 were graded Fuhrman high (III/IV). The
images in this database have variations in CT scanner models, contrast adminis-
tration, field of view, and spatial resolution. The in-plane pixel size ranged from
0.29 to 1.87 mm and the slice thickness ranged from 1.5 to 7.5 mm. We nor-
malized the intensity of all the datasets between [-1000, 3000] Hounsfield Units.
We divided the dataset for training/validation/testing as 44/5/15 and 75/5/15
for Fuhrman low and and Fuhrman high, respectively. Note that typical tumor
radiomic analysis comprises [14]: (i) 3D imaging, (ii) tumor detection and/or
segmentation, (iii) tumor phenotype quantification, and (iv) data integration
(i.e. phenotype + genotype + clinical 4+ proteomic) and analysis. Our approach
falls under step-iii. The input data to our method are thus 2D image patches
of size 64x64 pixels, taken from kidney+ccRCC (i.e. both mutually inclusively
present) bounding boxes. We do not require any fine pre-segmentation of the
ccRCC rather only assume a kidney+ccRCC bounding box, generated in step-ii.
For this study, kidney+ccRCC bounding boxes are manually generated. We also
do not require any voxel spacing normalization among the datasets. Given data
imbalance where samples for Fuhrman low are fewer than for Fuhrman high, we
allowed more overlap among adjacent patches for the Fuhrman low dataset. The
amount of overlap is calculated to balance the samples from both cohorts.

2.2 Learnable Image Histogram for Classification

Learnable Image Histogram: Our proposed learnable image histogram (LIH)
stratifies the pixel values in an image z in different learnable and possibly over-
lapping intervals (bins of width wp) with arbitrary learnable means (bin centers
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Bp). The feature value hy(z) : b € B — R, corresponding to the pixels in x that
fall in the b*" bin, is estimated as:

hp(z) = P{Hp(x)} = ¢{max(0,1 — |x — Bp| x wp)}, (1)

where B is the set of all bins, ¢ is the global pooling operator, Hy(z) is the
piece-wise linear basis function that accumulates positive votes from the pixels
in z that fall in the b*" bin of interval [8, — wy/2, By + wp/2], and Wy is the
learnable weight related to the width wy of the b*" bin: w, = 2/wy. Any pixel
may vote for multiple bins with different Hj(x) since there could be an overlap
between adjacent bins in our learnable histogram. The final |B| x 1 feature values
from the learned image histogram are obtained using a global pooling ¢ over
each Hy(x) separately. This pooling can be a ‘non-zero elements count’ (NZEC),
which matches the convention of a traditional histogram, or can be an ‘average’
or ‘max’ pooling, depending on the task-specific requirement. Similar to [12], the
linear basis function Hy(x) of the LIH is also piece-wise differentiable and can
back-propagate (BP) errors to update 8, and w;, during training. The gradients
of B, and w; for a loss L are estimated as:

o Wy if Hy(x) >0and z — G, > 0,
% =< —wy if Hb(:c) >0and x — B <0, (2)
b .
0 otherwise.
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Fig. 1. The architecture of our learnable image histogram using CNN layers.

Design of LIH using CNN Layers: The proposed LIH is implemented using
CNN layers as illustrated in Fig. 1. The input of LIH can be a 2D or vectorized
1D image, and the output is a |B| x 1 histogram feature vector. The operation
x — Py for a bin centered at [, is equivalent to convolving the input by a 1 x 1
kernel with fixed weight of 1 (i.e. with no updating by back-propagation [BP])
and a learnable bias term £, (‘Conv 1’ in Fig. 1). A total of B = |B| number of
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Fig. 2. Multiple instance decisions aggregated ImHistNet for grade classification.

similar convolution kernels are used for a set of B bins. Then an absolute value
layer produces |x — fp|. This is followed by a set of convolutions (‘Conv 2’ in
Fig. 1) with a total of B separate (non-shared across channels) learnable 1 x 1
kernels and a fixed bias of 1 (i.e. no updating by BP) to model the operation of
1— |z — Bp| x wp. We use the rectified linear unit (ReLU) to model the max(0, -)
operator in Eq. 1. The final |B| x 1 feature values hy(x) are obtained by global
pooling over each feature map Hy(x) separately.

ImHistNet Classifier Architecture: The classification network comprises ten
layers: the LIH layer, five (F1-F5) fully connected layers (FCLs), one softmax
layer, one average pooling (AP) layer, and two thresholding layers (see Fig. 2).
The first seven layers contain trainable weights. The input is a 64x64 pixel im-
age patch extracted from the kidney+ccRCC slices. During training, randomly
shuffled image patches are individually fed to the network. The LIH layer learns
the variables 8, and w; to extract representative textural features from image
patches. In implementing the proposed ImHistNet, we chose B = 128 and ‘av-
erage’ pooling at Hy(x). We set subsequent FCL (F1-F5) size to 4096x 1. The
number of FCLs plays a vital role as the overall depth of the model has been
shown to be important for good performance [15]. Empirically, we achieved good
performance with five FCL layers. Layers 8, 9 and 10 of the ImHistNet are used
during the testing phase and do not contain any trainable weights.

Training: We trained our network by minimizing the multinomial logistic loss
between the ground truth and predicted labels (1: Fuhrman low, and 0: Fuhrman
high). We employed a Dropout unit (Dx) that drops 20%, 30%, and 40% of units
in F2, F3 and F4 layers, respectively (Fig. 2) and used a weight decay of 0.005.
The base learning rate was set to 0.001 and was decreased by a factor of 0.1
to 0.0001 over 250,000 iterations with a batch of 128 patches. We did not use
any batch normalization. Training was performed on a workstation with Intel
4.0 GHz Core-i7 processor, an Nvidia GeForce Titan Xp GPU with 12 GB of
VRAM, and 32 GB of RAM.

ccRCC Grade Classification: After training ImHistNet (layers 1 to 7) by
estimating errors at the layer 7 (i.e. Softmax layer), we used the full configura-
tion (from layer 1 to 10) in the testing phase. Although we used patches from
only ccRCC-containing kidney slices during training and validation, not all the
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ccRCC cross-sections contained discriminant features for proper grade identifica-
tion. Thus our trained network may miss-classify the interrogated image patch.
To reduce such misclassification, we adopt a similar multiple instance decision
aggregation procedure proposed by Hussain et al. [9]. In this approach, we feed
randomly shuffled single image patches as inputs to the model during training.
During inference, we feed all candidate image patches of a particular kidney to
the trained network and accumulate the patch-wise binary classification labels
(0 or 1) at layer 8 (the thresholding layer). We then feed these labels into a P x 1
average pooling layer, where P is the total number of patches of an interrogated
kidney. Finally, we feed the estimated average (Eqq4) from layer 9 to the second
thresholding layer (layer 10), where E,,, > 0.5 indicates the Fuhrman low, and
Fuhrman high otherwise (see Fig. 2).

3 Results and Discussion

Table 1. Automatic ccRCC Fuhrman grade classification performance comparison.
NTS: Number of test samples, HE: hand engineered, SVM: support vector machines,

xFCV: x-fold cross-validation, LxOCV: leave-x-out cross-validation, ‘-’: Not reported.

lRow[Method Types [Methods [NTS[Accuracy[ AUC ]
1 |Conventional Full image+ResNet-50 30 53% 0.4302
2 |CNNs Full image+AlexNet 30 56% 0.4756
3 Patch+ResNet-50 30 50% 0.6680
4 Patch+AlexNet 30 56% 0.4505
5 |HE Features + Patch+Histogram (128 bins)+SVM 30 56% 0.5046
6 |Conventional Patch+Histogram (256 bins)+SVM 30 63% 0.5140
7 |Machine Ding et al. [1] 92 - 0.6700
8 |Learning (ConML) [Shu et al. [2] (BFCV on 260 samples) - 7% 0.8220
9 Fei et al. [16] (L1OCV on 90 samples) - 70% -
10 Oh ot al. [6] 173 . 0.7000
11 |HE Features + Patch+Histogram (128 bins)+5 FCL 30 50% 0.5664
12 |Deep Learning Patch+Histogram (256 bins)+5 FCL 30 50% 0.6449
13 |LIH + ConML Patch+LIH (128 bins)+AP+SVM 30 60% 0.5885
14 |LIH + Different Patch+LIH (128 bins)+NZEC+5 FCL 30 50% 0.5502
15 |Number of FCL/bins|Patch+LIH (128 bins)+AP+4 FCL 30 50% 0.6388
16 |+ Different Pooling [Patch+LIH (128 bins)+AP+6 FCL 30 50% 0.6379
17 |Types Patch+LIH (64 bins)+AP-+5 FCL 30 50% 0.6386
18 Patch+LIH (256 bins)+AP+ 5 FCL 30 43% 0.6378
19 |[Combined LIH & Patch+LIH (128 bins)+AP+5 FCL 30 53% 0.6501
20 |Conventional CNN |Full Image+LIH (128 bins)+AP+ 5 FCL| 30 50% 0.4883
21 |Proposed ImHistNet [LIH (128 bins)+AP+5 FCL] | 30 80% 0.8495

We compared our ccRCC grade classification performance in terms of accu-
racy (%) and area under the curve (AUC) to a wide range of methods in Table 1.
Note that for all our implementations, we trained models with shuffled single im-
age patches, and used multiple instance decision aggregation per kidney during
inference. We fixed our patch size to 64 x 64 pixels across all contrasted methods.



ImHistNet for ccRCC Grades Determination in CT 7

First, we use ResNet-50 and AlexNet (rows 1-4) with transfer learning in
order to test the performance of conventional CNNs. Here, we used the full kid-
ney+ccRCC slices as well as patches as inputs. As we mentioned in Sect. 1 that a
classical CNN typically fails to capture textural features, it has become evident
from the results where such CNNs performed poorly in learning the textural fea-
tures of ccRCC. Next, in order to evaluate the performance of hand-engineered
(HE) features-based conventional machine learning (ConML) approaches, we
tested SVM (rows 5-6) employing the conventional image histogram of 128 and
256 bins. We also compared four state-of-the-art methods in rows 7-10. Since we
do not have access to their codes and datasets, we conservatively quote authors’
best self-reported performances. These methods mostly relied on the ccRCC tex-
tural features, and used classical predictive models, e.g. logistic regression. Here,
the method by Shu et al. [2] performed the best with 77% classification accuracy.
Then, to contrast the performance of a SVM against a DNN, we fed the conven-
tional histogram (128 and 256 bins) features to a DNN of 5 FCL with weight
sizes (4096x1)-(4096x1)-(4096x1)-(4096x1)-(2x 1) (rows 11-12). We choose this
FCL configuration as our ImHistNet contains the same. The better AUC score
by the FCL approaches suggest that it better classify tumor grade than that by
the SVM (rows 5-6). Next, to evaluate the HE features against LIH features, we
used LIH features to train a SVM (row 13). We see that the SVM with LIH fea-
tures outperformed the SVM with conventional histogram features (row 5). We
also varied the number of bins (64/128/256) and FCLs of size 4096x1 (4/5/6),
and the pooling types (AP/NZEC) with the LIH layer (rows 14-18). However,
the classification performance in terms of AUC by any of these combinations did
not exceed ~65%. After that, in order to evaluate the performance of a DNN,
combining a CNN and the ImHistNet, we added a CNN of AlexNet equivalent
configuration in parallel to the ImHistNet. The last FCLs of size 4096x1 in
both networks were concatenated and the total network was trained end-to-end.
We implemented two such approaches using the full kidney+ccRCC images, as
well as the patches as inputs (rows 19-20). We observed that the classical CNN
affect the performance of the proposed ImHistNet negatively, i.e. results were
worse than those by ImHistNet (row 21). In conclusion, our proposed ImHist-
Net achieved the highest accuracy and AUC performance among all contrasted
methods as can be seen in row 21.

4 Conclusions

We proposed a learnable image histogram based DNN framework for end to end
image classification. We demonstrated our approach on a cancer grade prediction
task providing automatic 2-tiered FGS (Fuhrman low and Fuhrman high) grade
classification of ccRCC from CT scans. Our approach learns a histogram directly
from the image data and deploys it to extract representative discriminant textu-
ral image features. We increased efficacy by using small image patches to increase
the number and variability of training samples, as well address class imbalances
in the training data via overlap control. We also used multiple instance decision
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aggregation to further robustify binary classification. Our proposed ImHistNet
outperformed current competing approaches for this task including conventional
ML, deep learning, as well as manual human radiology experts. ImHistNet ap-
pears well-suited for radiomic studies, where learned textural features using the
learnable image histogram may aid in better diagnosis.

Acknowledgement: We thank NVIDIA Corporation for supporting our re-
search through their GPU Grant Program by donating the GeForce Titan Xp.
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