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Abstract—In this paper, we propose a novel data recon-
struction method for the compressively sensed ultrasound radio-
frequency (RF) data using the combined curvelets- and wave
atoms- (CCW) based orthonormal basis. Typically, the curvelets-
based reconstruction better preserves the image features while the
wave atoms-based reconstruction better preserves the oscillatory
patterns of the typical ultrasound RF signals. We exploit the
advantages from both the sparsifying bases via concatenating
them where the RF reconstruction is done from the larger
coefficients of the combined basis. We show that the CCW-based
reconstruction method better recovers the RF oscillatory patterns
as well as preserves the image features better than those of the
curvelets- and wave atoms-based reconstruction methods alone.
We find improvement with respect to the current methods of
approximately 58% and 64% in terms of the normalized mean
square error for the reconstructed synthetic phantom and in
vivo RF data, respectively. We also show visual performance
improvement in the B-mode images of approximately 33% and
44% in terms of the mean structural similarity for the synthetic
phantom and in vivo data, respectively.

Keywords—Ultrasound, curvelets, wave atoms, compressive
sensing, sparsity.

I. INTRODUCTION

Ultrasound (US) imaging has become an essential part
of clinical routine that produces real-time images of patient
anatomy. As a non-ionizing and low-cost modality, US has a
number of advantages over other medical imaging modalities
like non-invasiveness, portability, and versatility. However,
handling a large amount of US data during real-time imaging
as well as its transmission at low bit rate (and without any per-
ceived loss of image quality) in tele-medicine are considered
limiting factors [1].

The recently introduced compressive sensing (CS) theory
allows to recover a signal sampled below the Nyquist sampling
limit [2] under certain assumptions. CS provide optimized
ultrasound imaging solutions that also has the potential to offer
a coherent framework for image analysis, object detection, and
information extraction [4]. CS can also improve efficiency of
triplex acquisitions for CFM/B-mode/Doppler or 3D imaging
using matrix arrays [4]. So far, a number of sparsifying bases
for the reconstruction of compressively sensed US have been
proposed in literature like the Fourier [1], wavelets [2] , wave
atoms [2], [3], curvelets [3], and Bayesian [4], [5] bases. The
Bayesian framework-based methods [4], [5] have a limitation
that the data are projected on a random Gaussian basis prior

to the reconstruction which is difficult to apply in practice
[2]. Recently, the wave atoms-based reconstruction is shown
better than those of the Fourier and wavelets bases [2] since
it better reconstruct the oscillatory pattern of the ultrasound
RF data. However, the major limitation of the wave atoms-
based method is that it distorts the image features (e.g., lesion-
soft tissue interfaces). On the other hand, the curvelets-based
reconstruction [3] better preserves image features but produces
noisy RF data which results in the distorted speckle patterns
in the corresponding B-mode image.

In this paper, we propose a novel reconstruction method
for the compressively sensed ultrasound RF data using the
combined curvelets- and wave atoms-based orthonormal basis.
We exploit the merits of both the sparsifying orthonormal
bases via concatenating them where RF data is reconstructed
from the larger coefficients of the combined basis. We use
a synthetic phantom and in vivo patient data to validate the
proposed method where we observe marked improvement in
the normalized mean square error (NMSE) estimated from
the reconstructed RF and B-mode data. We also observe
considerable visual performance improvement in terms of the
mean structural similarity (MSSIM) in the B-mode images
estimated from the reconstructed RF data.

II. METHODS

Our method is divided into two parts. In Sect. II-A, we
discuss the restriction operator that is used to compressively
sense the US RF data. Then, in Sect. II-B, we discuss the
reconstruction of the RF signals from the sparse data using
the combined curvelets and wave atoms.

A. Restriction Operator
2-dimensional (2D) CCW-based reconstruction is a sparse

optimization problem. Although we discuss the CCW-based
2D data reconstruction procedure in this section but it is
relatively straightforward to generalize the process to 3D. We
define vec as a vectorization operator of a 2D data matrix
and the reconstruction from a sparse 2D RF data follows the
forward model as

b = Rvec(F ), (1)

where b ∈ RN is the vector of acquired subsampled (sparse)
2D data with missing traces, F ∈ RNa×Nl is the to-be-
recovered 2D signal on a regular un-aliased output grid, N is
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the total number of samples in the subsampled RF data, and Na

and Nl are the total number of actual samples along each axial
(i.e., scan-line) and lateral line of the RF data, respectively. In
addition, R ∈ BN×NaNl with B = {0, 1}, is the restriction
operator that collects N samples from the full RF data F and
NaNl ≫ N . Thus, R is a binary sampling matrix, and both
the acquired data b and to-be-recovered data F depend on it.

B. CCW-based Reconstruction Method
The primary target of the CCW-based reconstruction

method is to recover the original signal F as in Eqn. (1)
using a combined orthonormal sparsifying domain that consists
of curvelets and wave atoms coefficients. This equation is an
under-determined inverse problem. The solution of this equa-
tion would be the model that agrees with incomplete data b
after being restricted by restriction operator R. We reformulate
the problem in Eqn. (1) according to the compressive sampling
theory as

b = Ax with A = RSH , (2)

where S = C∥W is the sparsifying transform that cate-
nates two different sparsifying bases namely curvelets C and
wave atoms W , ∥ sign denotes catenation operator, SH =
CH∥WH ), and x ∈ RP with P > N is the redundant
representation of the RF data in the sparsifying domain.

Finally, for randomized subsampling, Eqn. (2) can be
written as [6]

AH(b) = AHAx ≈ x+ n, (3)

where n represent the approximated additive white Gaussian
noise due to the spectral leakage. The curvelets and wave
atoms transforms give a compressible representation of s where
s is the number of non-zero element in the sparsifying domain
and therefore called s-sparse. It is shown in [7] that for a
matrix A with a specified isometry constant of the so-called
restricted isometry property, optimization problem in Eqn. (2)
can be solved as

P :

{
x̃ = argmin

x
∥ x ∥1 s.t. RSHx = b,

F̃ = SH x̃,
(4)

where ∥ x ∥1=
∑P

i=1 | xi | is the l1 norm. The recovered
vector that solves P is x̃, and F̃ is the estimate of the recovered
RF data.

III. VALIDATION SETUP

1) Synthetic Phantom: We built a 40mm×40mm×5mm
synthetic phantom using the ultrasound simulation software
Field II [8]. Our phantom corresponds to a cyst phantom
containing a total of 50,000 point scatterers. An ultrasonic
transducer of center frequency, f0 = 5MHz, sampling fre-
quency, fs = 20MHz, and band-width = 50% was used to
simulate the phantom scan from the top. The total number of
scan lines was set to 128. The phantom contained three hyper
echoic inclusions of diameters 5mm, 4mm and 3mm from top
to bottom, as well as three hypo echoic inclusions of diameters
3mm, 4mm and 5mm from top to bottom. The hypo echoic
inclusions contained no scatterers. However, in the background
and hyper echoic inclusions, the spatial distribution of the
scatterers was uniform. The scattering amplitude followed
a zero mean Gaussian distribution. The amplitude of the

scatterers’ inside the hyper echoic inclusions was set to ten
times of that of the background.

2) Real In Vivo Data: We use three sets of in vivo US data
from patients undergoing open surgical RF thermal ablation
for primary or secondary liver cancer and proper prior consent
was obtained [9]. US data were acquired using a RITA Model
1500 XRF generator (Rita Medical Systems, Fremont, CA) at
a transducer center frequency, f0 = 7.27MHz and sampling
frequency, fs = 40MHz. The study was approved by an
institutional review board.

IV. RESULTS AND DISCUSSION

We provide comparative results of our proposed method
with the wave atoms- [2], [3] and curvelets-based [3] RF signal
reconstruction methods. In addition to the evaluation by visual
inspection, we compare the performances of these methods in
terms of NMSE and MSSIM [10]. The quality metric NMSE
is defined as

NMSE =
1

Na ×Nl

Na∑
m=1

Nl∑
n=1

[F (m,n)− F̃ (m,n)]2. (5)

For the B-mode images, we replace F and F̃ in Eqn. (5) with
their corresponding B-mode images B and B̃, respectively.
Note that we normalize F , F̃ , B, and B̃ before estimating
the NMSE. Typically, it is assumed that the human visual
perception is highly adapted for extracting structural informa-
tion from a scene. The MSSIM is shown to be an excellent
predictor of the image perceptual quality. It considers contrast,
luminance and structural similarity between the B and B̃ to
compute the value of the index. So, as closer the MSSIM index
to the unity is, more visually closer the B and B̃ are. Due to
space limitation, we do not provide the detail description of
the MSSIM estimation process in this paper. Also note that
the ‘percentage (%) of data removed’ we denote in this paper
is estimated with respect to the original sampling rate of a
particular data.

A. Synthetic Phantom Results
To illustrate the efficacy of our proposed method in pre-

serving the important pathological information in the recon-
structed data than those by the individual curvelets- and
wave atoms-based methods, we show the corresponding B-
mode images of the synthetic data in Figs. 1(b)–(d). We see
that the curvelets-based reconstruction method well preserves
the inclusion boundaries but the speckle pattern in the soft
tissue region looks noisy compared to the actual image (see
Figs. 1(a) and (b)). On the other hand, the wave atoms-
based method produces better speckle pattern but distorts the
inclusion boundaries (shown with white arrows in Fig. 1(c)).
In contrast, the proposed CCW-based method well preserves
the inclusion boundaries as well as produces better speckle
patterns in the soft tissue region as seen in the B-mode image
(see Fig. 1(d)).

We also demonstrate the quantitative performance com-
parisons of the curvelets-, wave atoms-, and CCW-based
methods in terms of NMSE and MSSIM metrics in Figs.
1(e)-(g). In Figs. 1(e) and (f), we plot the estimated NMSE
between the actual and reconstructed RF data, and between
the actual and reconstructed B-mode data, respectively, at
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Fig. 1. Illustration of the RF data reconstruction performances of different methods using the synthetic phantom. (a) Actual B-mode image. Estimated B-mode
images from the RF data reconstructed by (b) curvelets-based, (c) wave atoms-based, and (d) CCW-based methods for 80% subsampling. (e) NMSE of the
reconstructed RF data, (f) NMSE of the estimated B-mode images from the reconstructed RF data, and (g) MSSIM of the estimated B-mode images from the
reconstructed RF data.

different subsampling rates. Here we see that the curvelets-
based method performs the worst in RF reconstruction (see
Fig. 1(e)) although it better preserves the inclusion boundaries
than the wave atoms-based method (see Fig. 1(f)) which
supports our claims during visual inspection. However, the
proposed reconstruction method outperforms both the methods
in RF reconstruction and image feature preservation at all the
subsampling rates as depicted in Figs. 1(e) and (f). In addition,
since the proposed reconstruction method produces the best
RF data, the resulting B-mode image matches the actual B-
mode image best at all the subsampling rates than those of
the curvelets- and wave atoms-based reconstruction methods
as evident from the MSSIM plots in Fig. 1(f).

B. In Vivo Results
We show the qualitative performance comparison of the

RF reconstruction as well as the image feature preservation by
the curvelets-, wave atoms- and CCW-based methods using
the in vivo data in Fig. 2. In Figs. 2(a)–(c), we see that
the wave atoms-based reconstruction results distorted lesion
boundaries/features in the B-mode images (see red arrows in
Figs. 2(a)-(c)). On the other hand, the curvelets-based recon-
struction method well preserves the lesion boundaries/features
but the speckle pattern in the soft tissue region looks noisy
compared to the actual image. In contrast, similar to the syn-
thetic data, the proposed CCW-based method well preserves
the image features as well as produces better speckle patterns
in the soft tissue region as seen in the corresponding B-mode
images (see Figs. 2(a)-(c)).

We also illustrate the quantitative performance comparisons
of the curvelets-, wave atoms-, and CCW-based methods in
terms of NMSE and MSSIM metrics using the in vivo data in
Figs. 2(d)-(l). In Figs. 2(d)–(f), we see that the mean NMSE

values for the reconstructed RF data by the curvelets-based
method are the highest while by the CCW-based method are
the lowest in all the patient cases at all subsampling rates.
Also in case of the B-mode images as shown in Figs. 2(g)–
(i), the mean NMSE values by the CCW-based method are
the lowest in all the patient cases at all subsampling rates.
However, by the increase of the data removal percentage, the
performance of the wave atoms-based method becomes better
than that of the curvelets-based method for B-mode images.
We also quantitatively compare the visual performance of the
curvelets-, wave atoms-, and CCW-based methods in terms of
MSSIM in Figs. 2(j)–(l). We see from these figures that the
mean MSSIM indexes of the proposed method are the highest
in all the patient cases at all subsampling rates. In contrast,
the mean MSSIM indexes of the wave atoms-based method
are the lowest in all the patient cases at all subsampling rates.

V. CONCLUSIONS

In this paper, we developed a novel data reconstruction
method for the compressively sensed ultrasound RF data using
the combined curvelets- and wave atoms-based orthonormal
basis. As the curvelets-based reconstruction better preserves
the image features while the wave atoms-based reconstruction
better preserves the oscillatory patterns of the typical ultra-
sound RF signals, we exploited the advantages from both the
sparsifying orthonormal bases via concatenating them where
optimized sparse representation is obtained from the larger
coefficients of the combined basis. We shown that the CCW-
based reconstruction method better recovers the typical RF
oscillatory pattern as well as preserves the image feature better
than those of the curvelets- and wave atoms-based reconstruc-
tion method alone. We demonstrated our improved perfor-
mance with respect to the current methods for a wide range of
validation data including a simulated synthetic phantom and
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Fig. 2. Illustration of the RF data reconstruction performance of different methods using 3 sets of in vivo data. (a)-(c) Actual and estimated B-mode images from
the reconstructed RF data (80% subsampled), (d)-(f) NMSE of the reconstructed RF data, (g)-(i) NMSE of the estimated B-mode images from the reconstructed
RF data, and (j)-(l) MSSIM of the estimated B-mode images from the reconstructed RF data.

in vivo data. Our method demonstrated an improvement of
approximately 58%, 80% and 33% on an average in the RF
NMSE, B-mode NMSE and B-mode MSSIM, respectively, in
the synthetic data test. Our method also shown an improvement
of approximately 64%, 50% and 44% on an average in the RF
NMSE, B-mode NMSE and B-mode MSSIM, respectively, in
the in vivo data test.
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