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Elasticity imaging techniques with built-in or regularization-based smoothing feature for ensuring strain
continuity are not intelligent enough to prevent distortion or lesion edge blurring while smoothing. This
paper proposes a novel approach with built-in lesion edge preservation technique for high quality direct
average strain imaging. An edge detection scheme, typically used in diffusion filtering is modified here for
lesion edge detection. Based on the extracted edge information, lesion edges are preserved by modifying
the strain determining cost function in the direct-average-strain-estimation (DASE) method. The pro-
posed algorithm demonstrates approximately 3.42–4.25 dB improvement in terms of edge-mean-
square-error (EMSE) than the other reported regularized or average strain estimation techniques in
finite-element-modeling (FEM) simulation with almost no sacrifice in elastographic-signal-to-noise-ratio
(SNRe) and elastographic-contrast-to-noise-ratio (CNRe) metrics. The efficacy of the proposed algorithm
is also tested for the experimental phantom data and in vivo breast data. The results reveal that the pro-
posed method can generate a high quality strain image delineating the lesion edge more clearly than the
other reported strain estimation techniques that have been designed to ensure strain continuity. The
computational cost, however, is little higher for the proposed method than the simpler DASE and consid-
erably higher than that of the 2D analytic minimization (AM2D) method.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction estimated from the pre- and post-compression RF echo waveforms
Elastography is an emerging medical imaging modality for
detecting the abnormal changes in soft tissue via the assessment
of tissue stiffness usually in terms of strain. It can be considered
an alternative to manual palpation of tissue, practiced by physi-
cians for primary clinical diagnosis. Generally, pathologic and stiff-
ness changes in soft tissue are well-correlated, and therefore,
abnormal changes in stiffness convey warning signs of diseases
in organs like breast, liver, and prostate [9,17,18]. In quasi-static
elastography, various strain estimation methods have been devel-
oped for the detection and classification of lesions and/or tissue
pathology change. Some of them are gradient-based techniques
[1,8,15,17,18,25] where the strain is typically computed as the spa-
tial gradient of local tissue displacements, and some are direct-
strain-estimation techniques [3,16,23] where the strain is directly
or spectra.
The gradient-based strain estimators face challenges in main-

taining displacement continuity due to pre- and post-compression
echo decorrelation, and other noise artifacts [3,8,16]. The gradient
operation over the displacement map further amplifies these high
frequency noise while estimating strain [1,23]. To obtain a noise
reduced strain map, a smoothing technique based on least-
squares-linear-regression [13] or least-squared-error-based
smoothing-spline [1] can be applied on the displacement matrix
before the gradient operation. In addition, some of the recent meth-
ods designed to ensure displacement continuity (and thus strain
continuity) use estimates from the previous window in estimating
the interrogated window displacement [20–22,25]. In all these
techniques, strain continuity is achieved only at the cost of lesion
edge blurring along with the smoothing of the natural stiffness
variation inside the lesion.

Noise in the strain map resulting from the derivative operation
in the gradient-based methods can be avoided by using direct-
strain-estimation methods that exist both in the time [3,11] and
frequency domain [10,23]. Though these methods show better
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SNRe performance than the gradient-based techniques, they also
face challenges to ensure strain continuity among neighborhood
due to echo decorrelation. To ensure strain continuity, in [10,11],
a cost function is defined for an interrogated point on the strain
map from its exponentially weighted neighboring window pre-
and post-compression RF spectral sum-of-square-differences
(SSD) or echo cross-correlation peaks, respectively, in both the ax-
ial and lateral directions. However, though lesion edge preserva-
tion while ensuring the strain continuity is of great importance,
none of these techniques are intelligent enough to detect and pre-
serve the lesion edge as well as its natural stiffness variation inside.

In this paper, we propose a lesion edge preserved direct average
strain estimation (LEP-DASE) method for elastography. We modify
the direct average strain estimation (DASE) technique proposed in
[11] by introducing a built-in edge preservation criterion into the
average strain estimating cost function. A modified scheme based
on [14] is proposed here for lesion edge detection. The performance
of this algorithm is evaluated using a FEM phantom, experimental
phantom as well as in vivo patient data, and compared with other
recently reported regularized strain estimation algorithms.

The paper is organized as follows. Section 2 describes the basic
DASE and proposed LEP-DASE techniques. Section 3 presents the
simulation and experimental results to demonstrate the strength
of the proposed algorithm. Section 4 presents a discussion on the
study and concluding remarks are given in Section 5.

2. Methods

2.1. Brief Review of the Direct Average Strain Estimation

The simplified 1-D model of the backscattered ultrasound RF
signals before and after compression are given by [3]:

r1ðtÞ ¼ s1ðtÞ þ v1ðtÞ ¼ sðtÞ � pðtÞ þ v1ðtÞ; ð1Þ

r2ðtÞ ¼ s2ðtÞ þ v2ðtÞ ¼ s
t
a
� t0

� �
� pðtÞ þ v2ðtÞ; ð2Þ

where s(t) denotes the 1-D scattering function of the elastic target,
p(t) denotes the point-spread-function (PSF), a denotes the com-
pression factor due to axial deformation of the target medium, t0

denotes the time delay, v1(t) and v2(t) denote the uncorrelated ran-
dom noise profiles, r1(t) and r2(t) denote the pre- and post-compres-
sion rf echo signals, respectively, and ⁄ indicates the convolution
operation. The strain s is related to the compression factor 1/a as
[4], s = 1 � a where a 6 1 and s� 1.

Hussain et al. [11] proposed a method for direct average strain
estimation (DASE) using the weighted nearest neighbor method in
order to compensate for the signal de-correlation due to non-axial
motion of tissue scatterers and thereby to introduce a built-in
smoothing feature in the strain estimation algorithm. Calculated
strain from a pair of windowed RF segments for a particular tissue
point is assumed to be similar to the strains in the neighboring tis-
sues due to their physical proximity. This assumption, however,
works well unless there is a sudden change in the tissue stiffness.

Let F1(i, j) and F2(i, j) are the pre- and post-compression ultra-
sound RF echo frames, respectively. Here, i is the axial depth index
and j is the RF A-line index. An effective strain at a point (is,js) on
the strain map can be estimated from a corresponding pair of 1-
D windowed RF segments r1

ðis ;jsÞ and r2
ðis ;jsÞ selected from the pre-

and post-compression ultrasound image frames as [11]

rðis ;jsÞ1 ðiÞ ¼ F1ððis � 1ÞLv þ i; jÞ; for 1 6 i 6 Li and j ¼ js ð3Þ

rðis ;jsÞ2 ðiÞ ¼ F2ðroundððis � 1Þð1� savgÞLvÞ þ i; jÞ; for 1 6 i 6 Li

and j ¼ js þ js �
Nc

2

� �
savgm ð4Þ
where m represents the Poisson’s ratio, Nc represents the number of
scan lines in the RF frame, Lv is the axial separation between two
successive RF windows in samples and Li represents the length of
the 1-D RF window. The assumption that the approximate applied
strain savg is known a priori is a drawback of the DASE method
[11]. In this paper, instead of assuming that savg is a known constant,
we adaptively define it from the estimated previous window strain
So(is � 1, js) as [6]

savg ¼
0; is ¼ 1
Soðis � 1; jsÞ; otherwise:

�
ð5Þ

After stretching the post-compression echo segment rðis ;jsÞ2 by a fac-
tor a (61), the normalized cross-correlation (NCC) coefficient qa(k)
between rðis ;jsÞ1 and rðis ;jsÞa is estimated as [19],

qðis ;jsÞa ðkÞ ¼
PLi

i¼1rðis ;jsÞ1 ðiÞ � rðis ;jsÞa ðiþ kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPLi
i¼1fr

ðis ;jsÞ
1 ðiÞg

2PLi
i¼1fr

ðis ;jsÞ
a ðiÞg

2
q : ð6Þ

The peaks of qðis ;jsÞa ðkÞ are calculated by using the cosine interpola-
tion for different values of a:

Maðis; jsÞ ¼ qðis ;jsÞa arg max
k

qðis ;jsÞa ðkÞ
� �� �

; ð7Þ

where Ma is a matrix that contains the NCC peaks. For average
strain estimation, a cost function is defined as

Jðis ;jsÞa ¼
XisþLa

i0¼is�La

XjsþLl

j0¼js�Ll

wðis ;jsÞði0; j0ÞMaði0; j0Þ; ð8Þ

where

wðis ;jsÞði0; j0Þ ¼ e�jkaði0�isÞj�jklðj0�jsÞj; for is � La 6 i0

6 is þ La; js � Ll 6 j0 6 js þ Ll ð9Þ

Here, ka and kl are the weighting factors, and La and Ll are the near-
est neighbor (NN) factors in the axial and lateral directions, respec-
tively. The weight function wðis ;jsÞ is defined in such a way so that the
RF windows of increasing distance from the interrogated window
are least ‘‘emphasized’’. However, there is no constraint incorpo-
rated for the lesion edge preservation in the cost function (Eq.
(8)). Thus, instead of a sharp change in the strain profile, a slowly
decaying nature of the estimated strain is seen at the lesion edge
regions.

2.2. Lesion edge preserved direct average strain estimation (LEP-DASE)

In detecting an edge along a line of intensity pixels, we may face
two types of pixels: the noise pixel and the edge pixel (Fig. 1). A noise
pixel is one which has much higher or lower intensity than the adja-
cent pixels having similar intensities. The edge pixel is one which is
either on an inclining slope or on a declining. From these topology,
we can define the following necessary parameters [14]:

Dx ¼
jIE � IW j � d; if jIE � IW j > d

0; otherwise;

�
ð10Þ

AX ¼
1
2
ðIE þ IWÞ; ð11Þ

I0S;x ¼
IS � 1

2 DX ; if IS > AX

IS þ 1
2 DX ; if IS 6 AX ;

(
ð12Þ

PX ¼ I0S;x � AX ; ð13Þ

where IE and IW represent the image intensity values at the east and
west neighboring pixels, AX represents the average of the neighbor-



Fig. 1. Representation of (a) a typical noise pixel and (b) a typical edge pixel.
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ing pixels in the x-direction (East–West), I0S;x is an intermediate
intensity value of the interrogated pixel, and PX is the difference be-
tween I0S;x and AX. We define an auxiliary parameter d 2 [0,r] to pre-
vent small noise regions to be identified as edges, where r is the
standard deviation of the image noise. In the proposed method,
median absolute deviation (MAD) is used for automatic computa-
tion of d [5]. From Fig. 1, we see that PX is greater than DX for the
noise-like pixel, and PX is less than DX for the edge-like pixel. For
the y-direction (North-South), similar parameters DY ;AY ; I

0
S;y, and

PY can be estimated. These estimated parameters can be used for
the edge detection in a whole intensity image.

As shown in Fig. 2, in the proposed method, we modify the edge
detection scheme [14] originally designed for a whole intensity im-
age. In Fig. 2a, we show a portion from the FEM simulation phan-
tom (marked by a rectangular box ‘‘T’’ in Fig. 3b) having two
different stiffness. The NCC peaks for the interrogated (is, js) and
neighborhood tissue points for different stretching factor a are
shown in Fig. 2b. It is expected that the window NCC peaks of dif-
ferent tissue points having similar stiffness will be maximized at
the same stretching factor. Therefore, to check for the tissue points
with identical stiffness to that of the interrogated tissue point, we
need to find the reference stretching factor ar at which the interro-
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Fig. 2. Schematic and mesh diagrams illustrating the edge detection procedure, and tissu
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different stretching factor, and (c) 2-D plot of the reference plane Mar ðir ; jrÞ.
gated window NCC peak becomes maximum with respect to the
stretching factor a and it can be estimated as

ar ¼ arg max
a

qðis ;jsÞa

� �
: ð14Þ

Now, Mar ðir; jrÞ plane for is � La 6 ir 6 is + La and js � Ll 6 jr 6 js + Ll is
considered as the reference image, and assumed equivalent to an
intensity image for edge detection. A mesh plot showing the refer-
ence plane Mar ðir; jrÞ is depicted in Fig. 2(c). The region-of-interest
(ROI) (is � La 6 ir 6 is + La and js � Ll 6 jr 6 js + Ll) that includes the
interrogated and neighborhood tissue points consists of two homo-
geneous areas of highly different stiffness. Therefore, the compres-
sion factor in the post-compression signal windows inside this ROI
will be much less in the stiffer area than the softer one. Note that
the interrogated tissue point is on the border of the less stiff area
(see Fig. 2a). In this case, since the NCC function between the inter-
rogated pre-and post-compression signal windows will be maxi-
mum for the stretching factor ar (Eq. (14)), the neighborhood NCC
functions estimated from the corresponding pre-and post-compres-
sion windowed signals in the less stiff area of the ROI are also ex-
pected to be close to the maximum for the same stretching factor
ar due to their stiffness similarity to the interrogated one. However,
using the same stretching factor ar for the post-compression win-
dowed signals in the stiffer area of the ROI will result in much lower
NCC peaks as depicted in Fig. 2c. An informative NCC peak plane
(i.e., the reference plane Mar ðir; jrÞ) can, therefore, be formed as
shown in Fig. 2c that has a very sharp edge at the interface of two
dissimilar stiffness areas, where the edge detection scheme can be
applied. Also note that instead of detecting edge in the entire
Mar ðir; jrÞ plane, only the interrogated pixel (i.e., the NCC peak) is
tested whether it is on an edge or not. The idea behind the edge
detection on Mar is that if the interrogated pixel is on a lesion edge,
PX would be less than DX and/or PY would be less than DY in x � and
y � directions, respectively. Note that we calculate r for the whole
Mar plane.

Now the exponential weight defined in Eq. (9) needs to be mod-
ified to preserve the edge. The spreading of the exponential weight
is to be controlled so that it does not include the smaller NCC val-
ues and thus, avoid interference of NCC values of different stiffer
region into the cost function (Fig. 2c). However, from Eqs. (10)–
(13), we can only know whether the interrogated NCC peak is on
an edge or not, but we yet to know the orientation (i.e., East, West,
North and South) of different stiffer region with respect to it. Let
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the interrogated, East, West, North and South pixels are defined as
I¼Mar ðis;jsÞ;E¼Mar ðis;jsþ1Þ;W¼Mar ðis;js�1Þ;N¼Mar ðis�1;jsÞ and
S¼Mar ðisþ1;jsÞ, respectively. Then, the modified ranges from East
(RE) to West (RW) and North (RN) to South (RS) of the weight func-
tion defined in Eq. (9) can be chosen as

RE ¼
js; if jI � Ej > jI �Wj
js þ Ll; otherwise;

�
ð15Þ

RW ¼
js; if jI � Ej < jI �Wj
js � Ll; otherwise;

�
ð16Þ

RN ¼
is; if jI � Nj > jI � Sj
is � La; otherwise;

�
ð17Þ

RS ¼
is; if jI � Nj < jI � Sj
is þ La; otherwise:

�
ð18Þ

Now, by using these modified ranges for all the stretching factors,
the modified cost function is defined for a particular strain point
(is, js) on the strain map as

J
�
ðis ;jsÞ
a ¼

XRS

i0¼RN

XRE

j0¼RW

wðis ;jsÞði0; j0ÞMaði0; j0Þ: ð19Þ

Then, the desired value of a is calculated as

aðis ;jsÞo ¼ arg max
a
fJ
�
ðis ;jsÞ
a g: ð20Þ

And, finally, the effective average strain at (is,js) is estimated as

Soðis; jsÞ ¼ 1� aðis ;jsÞo : ð21Þ
3. Simulation and experimental results

We provide comparative results of our proposed method with
the 2-D analytic minimization (AM2D) [21] and direct average
strain estimation (DASE) [11] methods using the FEM phantom,
experimental phantom (CIRS Inc., Norfolk, VA, USA) and the
in vivo patient data. In addition to the evaluation by visual inspec-
tion, we compare the performances of different methods in terms
of the SNRe [7], CNRe [24] and EMSE. The AM2D is a real-time elas-
tography technique based on analytic minimization of a regular-
ized cost function that incorporates similarity of RF data
intensity and displacement continuity. The strain field is computed
from the displacement field using Kalman filtering.
3.1. FEM simulation

A rectangular 40 mm � 40 mm FEM phantom was modeled
using the analysis software ANSYS (ANSYS Inc., Canonsburg, PA,
USA) and ultrasound simulation was performed over the model
using Field II [12]. In this simulation, the total number of nodes
was 54574. Due to using a 2-D model, it did not model out-of-
plane motion. This phantom had a homogeneous background with
stiffness of 10 kPa with a rectangular inclusion of dimension
10 mm � 20 mm (Fig. 3a). The stiffness of the inclusion was
80 kPa. The phantom was compressed from the top using a lar-
ger-width planar compressor. An ultrasonic transducer of center
frequency, f0 = 5 MHz and band-width = 50% was used to scan the
phantom from the top. The total number of scan lines was 128.

For qualitative evaluation of the perceptual quality of the strain
images generated by the AM2D, DASE and LEP-DASE methods, we
present strain images of the FEM simulation phantom for three dif-
ferent applied strains (2%, 4% and 6%) in Fig. 4. For the DASE and
LEP-DASE methods, we have used a data window (Li) of 2.28 mm
and an inter-window shift (Lv) of 0.28 mm. For all strains, all meth-
ods produce satisfactory strain images. However, strain images
produced by the DASE and LEP-DASE methods are merely similar
except the edge blurring performance. Due to no edge preserving
constraint in the cost function-based average strain estimation of
the DASE method, the inclusion edge is much blurred than that
of the LEP-DASE method. This edge blurring effect can be well
understood from the vertical 1-D strain profiles presented in
Fig. 4j–l. The profiles are selected so that the variation of stiffness
in the inclusion is included (dashed vertical line in Fig. 3b). In
Fig. 4j–l, we see that the edges of the strain well produced by the
DASE method are not enough steep compared to the actual ones
resulting in a broadened transition width of the strain well due
to blurring. On the other hand, we appropriately downsample
the strain profile produced by the AM2D method to match the data
length with that of the LEP-DASE and DASE methods. We can see
from Fig. 4j–l that the strain profiles estimated by the proposed
LEP-DASE method is more closer to the actual ones. For quantita-
tive evaluation of the edge preserving performance, we calculate
the EMSE between the actual and the estimated strain profiles,
and also the inclusion width. The EMSE is calculated as

EMSE ¼ 1
P

XP�1

p¼0

½UðpÞ � VðpÞ�2; ð22Þ

where U and V are the actual and estimated strain profiles of length
P, respectively. On the other hand, the measured width of the inclu-
sion at the width measuring line in Fig. 3c is 9.82 mm. We fit the
width measuring line approximately at the mid-height of the strain
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Fig. 4. Strain images of the FEM simulation phantom generated by different methods. Results (a, d, g) are produced by the AM2D, (b, e, h) are produced by the DASE (La = 4,
Ll = 4, ka = kl = 0.25,m = 0.5), (c, f, i) are produced by the proposed LEP-DASE (La = 4, Ll = 4, ka = kl = 0.25, m = 0.5), and (j, k, l) represent the strain profiles of different methods at
2%, 4% and 6% applied strain, respectively.
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Fig. 5. Illustration of lateral strain profiles produced by the proposed, DASE and AM2D methods at (a) 2%, (b) 4%, and (c) 6% applied strain, respectively.

Table 1
Estimated EMSE and inclusion widths for the stiffer inclusion at 2%, 4% and 6% applied strain. The actual inclusion width at the width measuring lines is 9.82 mm.

Methods 2% Strain 4% Strain 6% Strain

EMSE (�10�5) Width (mm) EMSE (�10�5) Width (mm) EMSE (�10�5) Width (mm)

AM2D 0.88 9.95 3.22 9.90 2.70 9.94
DASE 0.53 9.90 1.90 9.62 1.94 9.70
LEP-DASE 0.40 9.72 1.21 9.84 1.44 9.70

Table 2
SNRe and CNRe performance of different methods at 2%, 4% and 6% applied strain.

Methods 2% Strain 4% Strain 6% Strain

SNRe (dB) CNRe (dB) SNRe (dB) CNRe (dB) SNRe (dB) CNRe (dB)

AM2D 19.73 19.86 22.92 23.74 24.53 25.30
DASE 26.28 28.20 26.71 27.61 27.07 28.90
LEP-DASE 26.00 27.46 26.38 27.01 26.84 28.61
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well. The estimated values of EMSE and inclusion widths by differ-
ent methods are shown in Table 1. Note that the presented EMSE
values for all methods denote the minimum value obtained from
the properly aligned actual and estimated strain profiles. It is evi-
dent that the estimated EMSE is the least for the proposed LEP-
DASE method for all the three applied strain values. The EMSE per-
formance of the AM2D method is the worst for all the cases. How-
ever, the estimated inclusion widths are fairly accurate for all the
three methods.

We also show the horizontal 1-D strain profiles for the FEM
simulation phantom at three different applied strains in Fig. 5.
These profiles are selected in a way that the variation of stiffness
in the inclusion is included (solid horizontal line in Fig. 3b). From
Fig. 3d, it can be seen that the actual strain profile does not show
sharp edges at the two sides of the inclusion. The estimated strain
profiles in Fig. 5 by the DASE and LEP-DASE methods for 2%, 4%, and
6% applied strain satisfactorily follow the actual strain profile. But
the strain profiles produced by the AM2D method at 2% and 4% ap-
plied strain have noticeable variations though following the actual
trend while at 6% strain, it is significantly distorted (see Fig. 5a–c).

From Fig. 4, it may appear that the proposed LEP-DASE method
preserves the inclusion edge at the cost of smoothing performance.
Therefore, for quantitative performance evaluation of the proposed
and other two methods, two numerical performance metrics (i.e.,
SNRe and CNRe) are calculated at different applied strain (e.g.,
2%, 4% and 6%) for the FEM simulation phantom. The performance
metric SNRe [7] is defined as

SNRe ¼ ls

rs
ð23Þ
where, ls and rs denote the statistical mean and standard deviation
of the strain computed in a homogeneous area, respectively. Simi-
larly, the performance metric CNRe [24] is defined as

CNRe ¼ 2ðll � lbÞ
2

r2
l þ r2

b

ð24Þ

where l is the mean strain and r is the standard deviation of the
strain in a homogeneous area. The sub-subscript l and b refer to
the inclusion and background, respectively. For estimating the SNRe
and CNRe of the FEM simulation, the selected homogeneous back-
ground regions, B1 and B2, and the homogeneous inclusion area, L
are shown in Fig. 3b with rectangular boxes. The calculated SNRe
and CNRe values are presented in Table 2. From this Table, we
can see that the SNRe and CNRe values of the strain images pro-
duced by the LEP-DASE method is pretty close to those of the DASE
method although the SNRe and CNRe performance of the DASE
method is the best among other methods. Nevertheless, the visual
quality of the strain images by the LEP-DASE method appears to
be better because of its lesion edge preserving performance (see
Figs. 4, 6 and 7). The AM2D method shows the worst performance
among the techniques compared with.

3.2. Experimental phantom results

We have used a tissue-mimicking (TM) experimental phantom
of dimension 40 mm � 40 mm (CIRS Inc., Norfolk, VA, USA) to eval-
uate the performances of the proposed and other two techniques in
this paper. The phantom has a homogeneous background of stiff-
ness 33 kPa with an inclusion of stiffness 56 kPa inside. It was axi-
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Fig. 6. Illustration of the B-mode and strain images of the experimental phantom generated by different methods at 6% applied strain: (a) RF image (Time-Gain-
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m = 0.2). (f) The strain profiles of different methods (white-dashed lines in (c–e)).
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ally compressed 0.2 in. using a linear compressor which resulted in
an average strain of 6%. An Antares Siemens system (Issaquah, WA,
USA) with a 7.27 MHz linear array transducer was used to collect
RF data at a sampling rate of 40 MHz.

We show the RF, B-mode, and strain images of the experimental
phantom generated by the AM2D, DASE and LEP-DASE methods in
Fig. 6. From this figure, we see that the strain images produced by
the DASE and LEP-DASE methods are smoother than that of the
AM2D method. However, the inclusion edge is seen blurred for
the DASE method (Fig. 6d). But in Fig. 6e, we see that the inclusion
edge is well preserved by the LEP-DASE method. We also show the
strain profiles for the white-dashed lines in Fig. 6c–e in Fig. 6f. We
appropriately downsample the strain profile produced by the
AM2D method to match the data length with that of the LEP-DASE
and DASE methods. From these strain profile plots, we see that the
lesion edge is steeper for the LEP-DASE method than that of the
DASE method while the profile produced by the AM2D method is
not as smooth as those of the LEP-DASE and DASE methods.

Note that the lower ‘semi-circle’ of the inclusion in Fig. 6c–e is
slightly more blurred than the upper one. This may be due to the
fact that it resides in an area where the RF signal strength is signif-
icantly low due to depth and frequency dependent attenuation (see
Fig. 6a and b plotted without any time-gain-compensation (TGC) of
the RF data). The effect of interaction of the inclusion with the
neighborhood due to axial compression might also be a cause of
the little more blurring effect in that area. The second-half of the
strain profiles shown in Fig. 6f also demonstrate this effect.
3.3. Comparison Using in vivo breast data

We have chosen three sets of in vivo breast data from an exist-
ing database of 194 cases (age: 14–63 years). These data were ac-
quired by using a SonixTOUCH Research (Ultrasonix Medical
Corporation, Richmond, BC, Canada) scanner integrated with a
L14-5/38 probe operating at 10 MHz (nominal) at Bangladesh Uni-
versity of Engineering and Technology (BUET) Medical Center, Dha-
ka, Bangladesh. An institutional review board (IRB) approved the
study. In addition, prior consent was taken from every patient for
further use of these data in research. Note that data were acquired
with free-hand compression of the ultrasound probe. Two of them
represent benign breast tumors (Fibroadenoma) and the other one
represents a malignant case. The B-mode images of patient-I (Age:
38/Tumor type: Fibroadenoma), patient-II (Age: 15/Tumor type:
Fibroadenoma) and patient-III (Age: 25/Tumor type: Adenocarci-
noma) are shown in Fig. 7a, e, and i, respectively.

We observe from Fig. 7 that the AM2D method smooths the le-
sions to such a degree for patient-I and II (Fig. 7b, and f) that the
stiffness variation inside the lesions is totally lost. In case of pa-
tient-III, this method cannot perfectly extract the lesion from the
background. In addition, because of the absence of any edge pre-
serving constraint in the algorithm, the AM2D method smooths
the lesion edges as well, which is clearly depicted in Fig. 7b. The
DASE method though shows promise to be a better smoother, for
the similar reason as stated above, it also smooths the lesion edges
(Fig. 7c, g, and k). On the other hand, the proposed LEP-DASE meth-
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od smooths the strain images with the lesion edges preserved. In
Fig. 7d, h, and l, we have traced the lesion edges with small arrows
around them. As can be seen, the edges are much sharper and the
smoothing of the stiffness variation inside the lesions is signifi-
cantly less prominent than that of the original DASE method.

For better understanding of the lesion edge preservation sce-
nario, we plot the 1-D strain profiles for patient-I, II and III in
Fig. 7m–o, respectively. For each case, we see that the proposed
LEP-DASE method produces a steeper edge on both sides of the
lesions so that the lesion widths are clearly visible (indicated by
arrows in Fig. 7m–o). Whereas the DASE method smooths the edge
and the lesion width cannot be comfortably detected. On the other
hand, the strain profiles produced by the AM2D method reveal that
the strain well is not well-defined for the patient-I and II (Fig. 7m
and n), and is satisfactory for detecting edges for the patient-III
(Fig. 7o). We can also observe from the strain profiles produced
by the proposed LEP-DASE method for the patient-I and II (Fibroad-
enoma) that the estimated strain inside the lesions is about 0.2% on
average. Whereas for the patient-III (Adenocarcinoma), the esti-
mated strain by the proposed LEP-DASE method inside the lesion
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is almost close to zero. Thus, the typical assumption that malignant
lesions are stiffer than benign ones hold true in this case.
3.4. Evaluating performance in terms of computation time

The computation time (CPU: Core i5, 2.3 GHz, RAM: 2 GB, soft-
ware: MATLAB, The MathWorks, Natick, MA, USA) of our imple-
mentation of the AM2D, DASE, and LEP-DASE methods for
generating the strain images (in vivo breast experiment: patient-
I) was measured to be 0.35, 79.36, and 94.60 s, respectively. The re-
sults show that the AM2D method is very fast compared to others.
However, the AM2D method uses mex files but the others do not.
By using mex files, the computational time of the DASE and pro-
posed method can also be reduced.
4. Discussion

The performance of the proposed LEP-DASE method has been
demonstrated both quantitatively and qualitatively in the results
section. The distinct feature of the proposed LEP-DASE method that
differentiate it from the other strain continuity ensuring methods,
such as [10,11,21] is the detection of inclusion/lesion edges prior to
strain estimation and the formulation of the cost function accord-
ingly in a way that the inclusion/lesion edges are well preserved
while ensuring strain continuity among the neighborhood tissues.
The perceptual quality of the strain image obtained by the pro-
posed LEP-DASE method, in particular for the in vivo patient data,
has improved significantly in the lesion area due to the reduction
of the blurring effect. However, the computational complexity of
the LEP-DASE method is slightly higher than that of the DASE
due to incorporation of the edge detection algorithm, as it requires
some extra processing for each interrogated signal windows. Un-
like the DASE and LEP-DASE methods, the AM2D is a real-time
elastography method due to its high computational efficiency.

To compensate for the lateral shift of the RF data without using
a 2-D search region, the Poisson’s ratio, m has been used in Eq. (4) to
save some extra computation [10]. It has been varied from 0 to 1 at
an interval of 0.25 in order to choose an appropriate value and the
optimum image quality for all the strain images shown has been
observed for m = 0.5. This value agrees with that reported in [6].
In addition, it is assumed that p(at) ffi p(t) while similarity between
rðis ;jsÞ1 and rðis ;jsÞa is computed in Eq. (6). However, this assumption is
reasonably accurate at low strain [2,3]. Further study on the esti-
mation of PSF (p(t)) is necessary to compensate for this effect.

As the ultrasound RF signal gets attenuated while propagat-
ing along depth, the signal-to-noise ratio decreases. However,
this attenuation effect is less observed in the correlation-based
techniques (i.e., DASE and proposed LEP-DASE) as these meth-
ods seek for the RF waveform similarity between the the pre-
and post-compression signal windows. On the contrary, as the
AM2D method is based on pixel intensity similarity between
the pre-and post-compression signals, it is highly sensitive to
ultrasound attenuation effect. Moreover, the algorithm has been
observed to be highly sensitive to setting of the several other
parameters.

The proposed LEP-DASE method enhances the ultrasonic aver-
age strain imaging performance particularly by delineating the le-
sion edge more clearly as compared to other contemporary
techniques. The lesion edge preserved strain imaging might be
clinically significant for classifying tumors based on their shape
and area ratio (elastographic to B-mode) and also for determining
the spatial extent of tumors.
5. Conclusions

In this paper, we have presented a lesion edge preserving direct
average strain estimation method for high quality quasi-static elas-
ticity imaging. To prevent blurring of the lesion edge while ensur-
ing strain continuity, an intelligent edge preservation criterion is
incorporated in the exponential weighting process of the strain
determining cost function. It has been shown by the simulation,
experimental and in vivo patient results that the proposed method
is more accurate and robust in edge preservation than the other re-
cently reported strain estimation methods that have been designed
to ensure strain continuity.
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