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Abstract—Attenuation is a key diagnostic parameter of tis-
sue pathology change and thus may play a vital role in the 
quantitative discrimination of malignant and benign tumors in 
soft tissue. In this paper, two novel techniques are proposed 
for estimating the average ultrasonic attenuation in soft tissue 
using the spectral domain weighted nearest neighbor method. 
Because the attenuation coefficient of soft tissues can be con-
sidered to be a continuous function in a small neighborhood, 
we directly estimate an average value of it from the slope of 
the regression line fitted to the 1) modified average midband 
fit value and 2) the average center frequency shift along the 
depth. To calculate the average midband fit value, an aver-
age regression line computed from the exponentially weight-
ed short-time Fourier transform (STFT) of the neighboring 
1-D signal blocks, in the axial and lateral directions, is fitted 
over the usable bandwidth of the normalized power spectrum. 
The average center frequency downshift is computed from the 
maximization of a cost function defined from the normalized 
spectral cross-correlation (NSCC) of exponentially weighted 
nearest neighbors in both directions. Different from the large 
spatial signal-block-based spectral stability approach, a cost-
function-based approach incorporating NSCC functions of 
neighboring 1-D signal blocks is introduced. This paves the way 
for using comparatively smaller spatial area along the lateral 
direction, a necessity for producing more realistic attenuation 
estimates for heterogeneous tissue. For accurate estimation of 
the attenuation coefficient, we also adopt a reference-phantom-
based diffraction-correction technique for both methods. The 
proposed attenuation estimation algorithm demonstrates bet-
ter performance than other reported techniques in the tissue-
mimicking phantom and the in vivo breast data analysis.

I. Introduction

Because of the strong correlation between the attenu-
ation coefficient (AC) and various diseases in soft tis-

sue, measurement of attenuation by using the ultrasound 
pulse-echo system is emerging as a promising technology 
to characterize different pathological states of soft tissue 
in vivo [1]–[5]. With the assumption of constant sound 

speed, typical B-mode images display the envelope in-
formation of the ultrasound echo, where time-gain com-
pensation (TGC) is adjusted to compensate the pulse at-
tenuation with respect to depth. After TGC correction, 
further shadowing (or enhancement) artifacts below the 
regions of higher attenuation (or lower attenuation), indi-
cates substantial pathological changes in tissue. Using the 
tissue attenuation phenomenon in B-mode display, abnor-
mal pathological changes can be detected, for example, 
in the liver [3], thyroid [4], prostate [5], and breast [6]. 
Typically, the AC is found to be low for fatty tissue and 
medullary carcinoma and high for fibrosis and infiltrat-
ing ductal carcinoma [7], [8] in breast tissue. Despite its 
significant importance for noninvasive clinical diagnosis 
of tissue pathology changes, no reliable technique exists 
in the literature, and thus it is still an open problem in 
ultrasound research.

The attenuation estimation methods that have been 
developed so far can be categorized broadly into time- 
and frequency-domain techniques. A limited number of 
time-domain attenuation estimation methods exists in the 
literature that exploit the zero-crossing density of the RF 
signal [9], entropy difference between two successive nar-
rowband echo segments [10], and analysis of the B-mode 
images [11] to estimate the local AC. However, compensa-
tion for the diffraction effect in the RF echo to estimate 
AC accurately is very difficult for the time-domain attenu-
ation estimation methods.

Because of linear frequency dependence of the ultra-
sound attenuation [9], [12], frequency-domain methods are 
more suited to model the attenuation phenomena in soft 
tissue. Two basic techniques for acoustic attenuation es-
timation in the frequency domain are based on spectral 
shift and spectral difference measurements along the axial 
direction. Some spectral shift methods are parametric ap-
proaches that assume a Gaussian shape of the ultrasound 
transmit pulse and echo, and the local AC is estimated 
from the slope of the linear-regression line that locally fits 
the center frequency downshift with respect to depth [9], 
[13]–[15]. In [16], power spectral cross-correlation is used 
to estimate the center frequency downshift with respect 
to depth. These spectral shift methods face challenges to 
minimize the diffraction effects, especially in clinical set-
tings, resulting from the focusing of the array transducer 
[17]. To minimize the diffraction effects in attenuation es-
timation, several spectral difference methods have been 
developed [18]–[23]. A tissue-mimicking phantom (TMP) 
of known attenuation properties is used as a reference and 

Manuscript received January 17, 2013; accepted March 17, 2013. This 
work has been supported by the Higher Education Quality Enhance-
ment Project, University Grants Commission (CP#96/BUET/Win-2/
ST(EEE)/2010), Bangladesh, and in part by the National Research 
Foundation of Korea grant, funded by the Korean government (2009-
0078310).

M. K. Hasan, M. A. Hussain, and S. R. Ara are with the Depart-
ment of Electrical and Electronic Engineering, Bangladesh University of 
Engineering and Technology, Dhaka, Bangladesh (e-mail: khasan@eee.
buet.ac.bd).

M. K. Hasan and S. Y. Lee are with the Department of Biomedical 
Engineering, Kyung Hee University, Kyungki, Korea.

S. K. Alam is with Riverside Research, New York, NY.
DOI http://dx.doi.org/10.1109/TUFFC.2013.2673



hasan et al.: using nearest neighbors for accurate estimation of ultrasonic attenuation in spectral domain 1099

the power spectrum of the sample tissue is normalized by 
the power spectrum of the reference TMP at the same 
depth. For this diffraction compensation technique, the 
settings of all the parameters must be kept the same while 
acquiring the sample and reference RF data. In [18] and 
[19], AC is estimated as a function of frequency by mea-
suring the decay of the power spectral frequency compo-
nents with respect to depth. Some other spectral differ-
ence methods estimate the local AC from the slope of the 
straight line that fits the log-ratio of the power spectra 
from the proximal and distal segments of the ROI [20]–
[23], and these spectral difference methods are classified 
as the spectral-log difference methods. All of the spectral 
difference methods fail in estimating the AC properly in 
the lesion boundary because of the backscatter variation, 
although the spectral shift methods are fairly successful in 
this case. A hybrid method proposed in [24] combines the 
spectral difference and spectral shift methods to exploit 
the advantages of both. However, all of the spectral shift, 
spectral difference, and hybrid methods use a large spatial 
signal block to generate a stable block power spectrum, 
but it is often an unrealistic approach because the tissue 
pathology inside a large spatial region must be considered 
uniform, a requirement that is too idealistic for a hetero-
geneous tissue medium.

In this paper, we propose two novel spectral domain 
techniques for average ultrasonic attenuation estimation: 
1) the spectral normalization-based average attenuation 
estimation (SNAAE), and 2) the spectral cross-correla-
tion-based average attenuation estimation (SCAAE). 
Based on the assumption that a heterogeneous tissue can 
be modeled with several small homogeneous sub-regions 
[25], the local AC of a heterogeneous soft tissue can be 
considered pretty similar in a small subregion. Assum-
ing that each homogeneous subregion consists of a few 
scan-lines, we devised our proposed techniques in such 
a way that an average AC for each investigating block 
on a particular scan-line can be estimated by using its 
neighborhood blocks in the axial and lateral directions. 
In the SNAAE method, the local AC can be estimated by 
using some spectral parameters, e.g., midband fit, spec-
tral slope, and intercept, measured from the regression 
line that fits a system-effects-corrected power spectrum 
[34]. The SCAAE method, on the other hand, is based 
on the concept that the local AC is proportional to the 
derivative of the center frequency downshift with respect 
to depth. Here, we directly estimate an average value of 
AC from the slope of the regression line fitted to 1) the 
modified average midband fit value and 2) the average 
center frequency shift along depth for the SNAAE and 
SCAAE methods, respectively. The performance of these 
algorithms is evaluated using an experimental phantom as 
well as in vivo breast data and compared with other well-
known attenuation estimation algorithms.

The paper is organized as follows: Section II describes 
the proposed SNAAE and SCAAE techniques; Section 
III presents the simulation and experimental results to 
demonstrate the strength of the proposed algorithms in 

comparison to some other techniques in the literature; and 
conclusions are presented in Section IV.

II. Methods

A. The Signal Model

Generally, ultrasound pulse–echo attenuation estima-
tors assume a constant sound speed, linear frequency de-
pendence of the attenuation, and homogeneous backscat-
ters in the ROI. According to the Born approximation, 
multiple scattering can be ignored based on low scattering 
in tissues. Based on these assumptions, the received back-
scattered RF signal intensity F( f, z) at the transducer face 
can be expressed in the frequency domain as [26]

	 F f z T f D f z A f z R f z( , ) = ( ) ( , ) ( , ) ( , ),⋅ ⋅ ⋅ 	 (1)

where T( f ) is the transmit pulse; D( f, z) is the effect of dif-
fraction; A( f, z) is the cumulative attenuation in the soft 
tissue; R( f, z) is the consequence of the scattering proper-
ties of tissue, including the effective scatter size, scatter 
number density, and mean square variation in acoustic 
impedance between the scatterers and background; and z 
is the depth of the ROI from the transducer face.

The transmit pulse T( f ) can be assumed to be Gauss-
ian, and it is shown with rms error analysis in [16] that 
the approximation error is within 10% with respect to the 
practical scenario. Thus, the transmit pulse can be defined 
as [16]

	 T f e f f( ) = ,( ) 22 2− − c /( )σ 	 (2)

where fc is the center frequency and σ is the standard 
deviation of the transmit pulse. Diffraction [D( f, z)] has 
the effect of distorting the spectral properties of the RF 
echo in the pre- and post-focal regions because of acous-
tic focusing of a linear-array transducer around the ROI 
[27]. The cumulative attenuation A( f, z) in soft tissue is a 
function of frequency f and depth z, and can be expressed 
as [12]

	 A f z e f z f z( , ) = = 10 ,4 ( ) 2 ( ) 86.86− −ρ ρ / 	 (3)

where ρ( f ) denotes the AC in nepers per centimeter. It 
is reported in [12] that ρ( f ) demonstrates a linear fre-
quency dependence. Therefore, it can be written as ρ( f ) =  
β · f, where β denotes the AC in nepers per centimeter per 
megahertz.

Soft tissue typically contains a large number of random 
scatters, and therefore R( f, z) can be modeled as a sto-
chastic process [28], [29]. However, frequency dependence 
of R( f, z) can be modeled with power of frequency. Thus, 
R( f, z) is expressed in the exponential form of a Taylor 
series to derive a closed-form expression for spectral shift 
in frequency domain as [9], [16], [30]
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Eq. (4) ignores the higher order terms of the Taylor series 
expansion. Although the parameter n can vary from 0 for 
specular scattering to 4 for Rayleigh scattering, it is as-
sumed to be between 1 to 2 for human tissue.

B. Spectral Normalization-Based Average Attenuation 
Estimation Using the Weighted Nearest Neighbor Method

In estimating the AC by minimizing the system ef-
fect, the same transducer with identical settings is used 
to acquire RF data from the tissue sample and a reference 
TMP. The reference TMP has a known AC and approxi-
mately equal sound speed to that of the sample tissue. 
The power spectrum of the sample tissue at a particular 
depth is normalized by the power spectrum of the refer-
ence TMP for the same depth to minimize the system ef-
fects. Exploiting this system-effect minimization process, 
we propose a spectral normalization-based method where 
an average linear-regression line is fitted over the normal-
ized half-power bandwidth of the power spectrum, and 
some spectral parameters such as average midband fit, av-
erage spectral slope, and average intercept are estimated. 
The average regression line is computed from the weight-
ed average of regression lines fitted over nearest neighbor 
(NN) blocks.

For the reference and sample intensity spectra Fr( f, z) 
and Fs( f, z), respectively, (1) can be rewritten as

	 F f z T f D f z A f z R f zr r r r( , ) = ( ) ( , ) ( , ) ( , ),⋅ ⋅ ⋅ 	 (5)

	 F f z T f D f z A f z R f zs s s s( , ) = ( ) ( , ) ( , ) ( , ),⋅ ⋅ ⋅ 	 (6)

where the subscripts r and s denote the reference and 
sample, respectively. For the same average sound speed 
in the reference and sample tissues, the diffraction terms 
can be written as Dr( f, z) = Ds( f, z). Dividing (6) by (5), 
using (3), and expressing β in decibels per centimeter per 
megahertz [i.e., β (Np/cm/MHz) = 8.686 × β (dB/cm/
MHz)] yields [26]
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Taking the logarithm on both sides of (7) yields

	 10 [ ( , )] = 10
( , )
( , ) 2 ,log logF f z
R f z
R f z zs

r







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+ α 	 (8)

where α = (βr − βs)/f.
Some quantitative acoustic phenomena are modeled 

in [31] by using some parameters derived from the nor-
malized spectrum analysis. To define these parameters, 
a regression line is fitted over a usable bandwidth (i.e., 
approximately at −6 dB) of the normalized power spec-
trum of the sample tissue. From this regression line, three 
spectral parameters, namely, the spectral intercept at zero 
frequency (I), midband fit (M), and slope of the line (s) 
can be estimated, and they convey significant frequen-
cy-domain information about the tissue element. These 
parameters were originally used in [31] as quantitative 
measures for tissue characterization. The lower and upper 
cutoff frequencies, fl and fh, respectively, for the log power 
spectra are defined in such a way that both spectra shall 
have equal data length within the usable bandwidth. At 
a particular depth z, the fitted linear-regression line as a 
function of frequency over the usable bandwidth of the 
log power spectrum defined in (8) can be expressed as [32]

	 P f P f zα α( ) = ( ) 2 ,+ 	 (9)

where Pα( f ) is the regression line value at a particular fre-
quency f in the presence of a linear frequency-dependent 
attenuation α (in decibels per centimeter). P( f ) corre-
sponds to Pα( f ) at z = 0, which can be assumed to be a 
fitted straight line over 10 log [Rs( f, z)/ Rr( f, z)] in (8) and 
can be expressed as [see Fig. 1]

	 P f I sf( ) = .+ 	 (10)

We estimate another parameter, midband fit M = I + sfc, 
where fc is the center frequency of the usable bandwidth. 
The estimation of these parameters is graphically shown 
in Fig. 1. Because the estimated amplitude of the whole 
log power spectrum is noisy, use of usable bandwidth and 
the spectral parameters increases the robustness of the 
method. For a block power spectrum corresponding to a 
single tissue point (is, js) in the AC map, (9) can be rewrit-
ten with these spectral parameters as

	
P f P f fz

I sf fz
I s

i j i j
α β β

β β

( , ) ( , )( ) = ( ) 2( )
= 2( )
= [ 2

s s s s
r s

r s

+ −
+ + −
+ + (( ) ] .β βr s− z f

	 (11)

Here, parameters I and s shall be considered instanta-
neous for a particular tissue point (is, js) unless otherwise 
specified. Thus, with the presence of linear frequency-
dependent attenuation, the expressions for the spectral 
intercept Iα, midband fit Mα, and slope of the regression 
line sα can be written as

	 I Iα = ,	 (12)

	 M I s z fα β β= [ 2( ) ] ,+ + −r s c 	 (13)

	 s s zα β β= 2( ) .+ −r s 	 (14)



hasan et al.: using nearest neighbors for accurate estimation of ultrasonic attenuation in spectral domain 1101

Note that the attenuation affects the slope and midband 
fit, but not the intercept. The invariance of intercept in 
the presence of tissue attenuation has proved to be fairly 
accurate in our experience. A similar observation is also 
reported in [33].

Under the assumption that the tissue attenuation does 
not change abruptly, the slope of the slope s versus depth 
plot, according to (14), will give us the local value of (βr − 
βs) in decibels per centimeter per megahertz. However, to 
utilize all of the computed spectral parameters for robust 
AC estimation, we can rewrite (13) as

	 I M sf zf− + + −α β βc r s c2( ) = 0.	 (15)

Let Y = (I − Mα + sfc)/2fc and X = z. Then, (15) can be 
rewritten as

	 Y X+ −( ) = 0.β βr s 	 (16)

Because the intercept (I), slope (s), and center frequency 
( fc) are assumed constant (i.e., independent of attenua-
tion), (16) can be considered as a straight line giving an 
indirect relation between the drift in the midband fit val-

ues with depth resulting from attenuation. Now, from the 
slope γ of the regression line that fits (16), we can estimate 
the local AC (in decibels per centimeter per megahertz) as

	 β β γs r= .+ 	 (17)

Using average block power spectra in (5) and (6) gener-
ated from large spatial signal blocks as in [16], AC can 
be estimated from (17). But this approach is not suitable 
for in vivo data because tissues of different pathologies 
may reside within this large signal block area. Therefore, 
to estimate average AC only from a small neighborhood 
region, and also to improve the consistency and accuracy, 
we devise a new technique of average AC estimation by 
using the weighted nearest neighbors. We assume that the 
attenuation coefficients of neighboring tissues are almost 
the same because of their physical proximity. Although 
human tissue is heterogeneous in nature, it is shown in 
[25] that the typical heterogeneous tissue can be modeled 
with several small homogeneous subregions.

Therefore, to improve the accuracy and reliability of 
the estimate, an average regression line is calculated as 
the weighted average of regression lines of the nearest 
neighbor, and is given by

	 P f
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		  (18)

where P fi j
α
( , )( )s s  denotes the average value of P fi j

α
( , )( )s s  and 

w i j( , )s s  is the exponential weight function for an interroga-
tive point (is, js) on the 2-D AC map, defined as

	 w i j ei j i i j j( , )
0 0

| ( )| | ( )|( , ) = 0 0s s a s l s− − − −λ λ ,	 (19)

where λa and λl denote the weighting factors in the axial 
and lateral directions, respectively, and is − La ≤ i0 ≤ is 
+ La and js − Ll ≤ j0 ≤ js + Ll. La and Ll are the NN fac-
tors in the axial and lateral directions, respectively. We 
can see from (19) that w i ji j( , )

0 0( , )s s  is maximal (i.e., unity) 
at (i0, j0) = (is, js). The weight function w i j( , )s s  is defined in 
such a way that the block power spectral regression lines 
of increasing distance are properly weighted to be progres-
sively less emphasized (see Fig. 2). We use λa = λl = 0.50 
for the SNAAE method in this study, unless otherwise 
specified.

The effect of using the weighted average of NN regres-
sion lines is shown in Fig. 3. In this figure, we see that 
the instantaneous regression lines have variations in their 
spectral intercept values as well as in the midband fit val-
ues, although they are selected from the proximal homo-
geneous tissue points. This fluctuation in spectral param-
eters may be attributed to the noise in the power spectra 
over the −6-dB bandwidth. To minimize this noise effect, 
an average regression line can be estimated using the pro-
posed weighted nearest neighbors and henceforth average 

Fig. 1. Illustration of the spectral parameters estimation from the nor-
malized power spectrum (in decibels) of usable bandwidth. (a) The sam-
ple and reference spectra over −6-dB bandwidth, and (b) estimation of 
the spectral parameters from the fitted and extrapolated regression line 
over the log power spectral ratio. 
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spectral parameters (i.e., average midband fit, average 
slope, and average spectral intercept) can be estimated 
from this average regression line.

Because P fi j
α
( , )( )s s  = I + sf + 2(βr − βs)fz [see (11)], (18) 

yields,
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Then, by using P fi j
α
( , )( )s s , Iavg, and savg, we can rewrite (10) 

and (11) as

	 P f I s fi j( , )( ) = ,s s
avg avg+ 	 (22)

	
P f I s f fz

I s z f

i j
α β β

β β

( , )( ) = 2( )

= [ 2( ) ] .

s s
avg avg r s

avg avg r s

+ + −

+ + −
	 (23)

Now, for average midband fit, we can write

	 M I s z favg avg avg r s c= [ 2( ) ] .+ + −β β 	 (24)

For average AC estimation, let Yavg = (Iavg − Mavg + 
savg fc)/2fc and X = z, and then (24) can be rewritten as

	 Y Xavg r s+ −( ) = 0.β β 	 (25)

Now, from the slope γavg of the regression line that fits 
(25), we can estimate the local AC (in decibels per centi-
meter per megahertz) as

	 β β γs r avg= .+ 	 (26)

In Fig. 4, we show plots of the estimated Y, Yavg, and 
the theoretical line derived from (25) versus depth within 
an arbitrary scan-line segment of length 1.5 cm of a CIRS 
(Computerized Imaging Reference Systems Inc., Norfolk, 
VA) ultrasound phantom data set A (see Section III for 

Fig. 2. Illustration of the neighboring blocks’ contribution in the estima-
tion of effective attenuation coefficient (AC) for an investigating point 
(is, js). Note that some neighboring block regression lines are weighted 
exponentially to estimate the average regression line for the block at 
(is, js) point. 

Fig. 3. Representation of instantaneous regression lines P fg h
α
( , )( )s s ; (is − 2 ≤ gs ≤ is + 2 and js − 2 ≤ hs ≤ js + 2) and the proposed weighted averaged 

regression line [ ]P fi j
α
( , )( )s s  for attenuation coefficient (AC) estimation at (is, js) using the experimental phantom against the Fourier frequency  

points. 
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details) for three different SNRs (40, 30, and 20 dB) along 
with that for the original RF data. We have added ze-
ro-mean white Gaussian noise of different levels to the 
measured RF data to observe its effect on the proposed 
estimates. For consistency analysis, 100 realizations of the 
noisy RF data sets are used to generate Figs. 4(b)–4(d). 
From Fig. 4(a), we see for the original RF data that the 
instantaneous values obtained from the SNAAE method 
for La = Ll = 0 vary greatly with respect to the theo-
retical line, whereas the estimated Yavg by the proposed 
SNAAE method for La = Ll = 5 closely fits the theoreti-
cal line. As is evident from Figs. 4(b)–4(d), the estimated 
Yavg is much more accurate and consistent than Y at all 
SNRs. The lack of fit results in a bias of 0.0606, 0.0634, 
and 0.0778 dB/cm/MHz in the final estimates at 40, 30, 
and 20 dB SNR, respectively, with respect to the true AC 
value. The increase in bias resulting from additive noise in 
the final estimate of AC for the data set A (with data set 
B as reference) is also observed to be very low up to 25 dB 
SNR (0.0102 dB/cm/MHz at 25 dB SNR) for the SNAAE 
method with La = Ll = 5. It is, therefore, evident that the 
SNAAE method with nearest neighbors (i.e., La = Ll ≠ 
0) is more accurate for noise-robust acoustic attenuation 
estimation than the instantaneous method.

C. Spectral Shift-Based Average Attenuation Estimation 
Using the Weighted Nearest Neighbor Method

The spectral shift-based attenuation estimation meth-
ods usually estimate the AC from the slope of the cen-
ter frequency downshift with respect to depth; however, 
these methods give estimates with high variance [34] and 
typically use large spatial signal blocks to generate stable 
block power spectra to estimate tissue AC. As in the pre-
ceding section, the AC of a tissue is assumed to be fairly 
identical to the AC of its neighboring tissues because of 
their close physical proximity. To avoid using large spatial 
signal blocks, we propose a novel technique for average 
attenuation estimation by measuring the average spec-
tral shift with a robust cost function constructed from 
the exponentially weighted NSCC functions of the nearest 
neighbor 1-D signal blocks.

The NSCC between two power spectra F( f, z1) and 
F( f, z2) that corresponds to an interrogative point (is, js) 
on the 2-D AC map can be calculated as [35]

	 S f
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where z1 and z2 (>z1) are two different depths estimated 
with respect to the transducer face. With the assumption 
of no abrupt change in the local AC values, the spectral 
shift fc between the power spectra at depths z1 and z2 can 
be derived by substituting for T( f ), A( f, z), and R( f, z) 
from (2), (3), and (4), respectively, in (27) as
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where NC is a normalization constant defined as
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Simplifying (28), we obtain
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and
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Further simplifying, the NSCC function can be written as
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From the standard integral form 
−∞

∞ −∫ e xax 2
d  = π/a, we 

can rewrite (35) as
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To find the spectral shift from the maximum of the NSCC 
function, we differentiate S fi j( , )

0( )s s  with respect to f0, and 
equate it to zero as
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After simplifying, we obtain
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where fc(z) is the center frequency at depth z. Because the 
value of the parameter n is assumed to be between 1 and 
2 for human tissue, and the ultrasound center frequency fc 
is generally greater than the standard deviation σ of the 
transmitted pulse, (39) can be simplified as

	 β
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4
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d
d
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f z
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Note that although we calculate the normalized spectral 
cross-correlation in (27) to further use the correlation 
function in the cost function, (40) is structurally the same 
as that derived in [16] for AC estimation. However, in 
[16], (40) gives a single estimate of AC for a very large 
interrogative signal block. However, this approach is often 
not suitable for in vivo data because tissues of different 
pathologies may reside within this large signal block area. 
Therefore, to estimate an average AC only from a small 

neighborhood region, we use interrogative and weighted 
nearest neighbor NSCC values to form a cost function. 
That is why NSCC estimation is essential for using it in 
(41). Otherwise, a higher valued false cross-correlation 
peak with less weight may bias the desired estimate.

We now define a cost function from the weighted near-
est neighbor NSCC functions in both the axial and lat-
eral directions to estimate an average spectral shift and, 
thus, an average attenuation coefficient. Because the ACs 
of proximal tissues are more similar relative to the dis-
tant ones, an exponential weighting is performed to ensure 
relatively larger weights for the nearest NSCC functions. 
The cost function is defined as
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where w i j( , )s s  is the exponential weight function for an in-
terrogative point (is, js) on the 2-D AC map and is de-
fined as

	 w i j ei j i i j j( , )
0 0

| ( )| | ( )|( , ) = .0 0s s a s l s− − − −λ λ 	 (42)

Fig. 4. Illustration of the estimated Y, Yavg, and the theoretical line within an arbitrary 1.5 cm window segment for (a) no additive noise, (b) 40 dB 
SNR, (c) 30 dB SNR, and (d) 20 dB SNR tissue-mimicking phantom (TMP) data. The theoretical line is derived from (24). In (b), (c), and (d), 
100 realizations of the noisy RF data sets are used. The true attenuation coefficient (AC) values for the reference and sample TMP are 0.7 and 0.5  
dB/cm/MHz, respectively. 
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Here, λa and λl denote the weighting factors in the axial 
and lateral directions, respectively, and is − La ≤ i0 ≤ is 
+ La  and js − Ll ≤ j0 ≤ js + Ll. La and Ll are the NN 
factors in the axial and lateral directions, respectively. We 
can see from (41) that w i ji j( , )

0 0( , )s s  is maximal (i.e., unity) 
at (i0, j0) = (is, js). The weight function w i j( , )s s  is defined 
such that the NSCC functions of increasing distance are 
properly weighted to be progressively less emphasized (see 
Fig. 2). We do not incorporate any instantaneous NSCC 
functions from the neighborhood into the cost function if 
the corresponding instantaneous spectral downshift is out-
side the practical range. We use λa = λl = 0.1 for the 
SCAAE method in this study unless otherwise specified.

The effect of using such a cost function is shown in Fig. 
5. In this figure, we see that the NSCC functions estimat-
ed from the instantaneous signal blocks have variations in 
their peak positions, although they are selected from the 
proximal homogeneous tissue points. Some of the NSCC 
functions do not even have distinct peaks, whereas the 
proposed cost function depicts a clear peak. Therefore, the 
proposed cost function can be used to calculate reliable 
average spectral shifts along the depth.

The peaks of J fi j( , )
0( )s s  can be calculated by using any 

subsample interpolation algorithm (e.g., cosine interpola-
tion, parabolic interpolation) for different frequency shifts 
( fc). However, in this work, the average spectral shift at 
(is, js) is estimated using the cosine interpolation as

	 f J f
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Using the estimated favg, (38) can be modified as
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Because of the use of focused array transducers in 
clinical settings, the properties of the power spectra are 
distorted in the pre- and post-focal regions. This effect 
becomes evident in the slope of the straight line that fits 
the center frequency downshift along depth. Thus, the AC 
is under- and over-estimated in the pre- and post-focal 
regions, respectively [27]. To correct for this diffraction ef-
fect, a reference phantom of known attenuation properties 
can be used [16]. Backscattered RF signals are obtained 
for both the sample tissue and the reference phantom with 
the same transducer (i.e., center frequency, sampling fre-
quency, focus, depth, etc.) and power settings. Because 
the AC of the reference phantom is known, we can plot 
its theoretical center frequency downshift with respect to 
depth, with fc as the starting frequency near the trans-
ducer face (see Fig. 7). Again, we can estimate the AC 
of the reference phantom by the proposed method. From 
these theoretical and measured center frequency down-
shift plots, we can estimate the contribution of the dif-
fraction effect by subtracting the estimated value from 
the theoretical one along depth. This contribution is nor-
malized with respect to the frequency at each depth and 
is subsequently used for the diffraction correction of the 
sample tissue. A linear-fit window of length 20 mm over 
the diffraction-corrected local spectral shift is applied and 
finally, an average AC can be estimated from the modified 
(40) as
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In (45), σ is to be estimated from the mean full-width at 
half-maximum (FWHM) of the stable echo spectra. It is 
shown in [16] and [24] that stable spectra are achieved by 
using a large spatial signal block. However, because we 
use a 1-D signal block which contains three 50% axially 
overlapped signal windows, we estimate an exponentially 

Fig. 5. Representation of instantaneous normalized spectral cross-correlation (NSCC) functions S fg h( , )
0( )s s ; (is − 2 ≤ gs ≤ is + 2 and js − 2 ≤ hs ≤ js 

+ 2), and the proposed cost function [ ]J fi j( , )
0( )s s  for attenuation coefficient (AC) estimation at (is, js) using the experimental phantom against the 

spectral shift (i.e., lags). 
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weighted average FWHM ηw for the interrogative scan-
line as
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where

	 m j e j j( ) = ,0
| ( )|0− −κl s 	 (47)

where κl denotes the weighting factor in the lateral direc-
tion, js − Ll ≤ j0 ≤ js + Ll, and Ll is the NN factor in the 
lateral direction, and η( )0j  is the mean of instantaneous 
FWHM η( j0) along depth for the interrogative scan-line at 
j0. We can see from (47) that m( j0) is maximum (i.e., 
unity) at j0 = js. The weight function m is defined in a way 
such that the mean-FWHMs η( )0j  of increasing distance 
are properly weighted to be progressively less emphasized. 
We use κl = 0.1.

We show the instantaneous FWHM η along the depth 
for interrogative and neighboring scan-lines with dotted 
lines in Fig. 6(a). We also plot the exponentially weighted 
average FWHM ηw for the interrogative scan-line with 
a solid line in Fig. 6(a). The true FWHM is 0.65 for the 
transducer we use. In Fig. 6(b), we show the mean of ηw 
estimated from all the scan-lines in the RF frame. We can 
see from Fig. 6(b) that the mean of ηw is close to the true 
FWHM value (i.e., 0.65) with very low standard devia-
tion. Therefore, we can use the estimated weighted aver-
age FWHM ηw for calculating σ.

In Fig. 8, we show plots of the center frequency ( fc) 
downshift estimated by the SCAAE (La = Ll = 5) and 
spectral shift [16] methods, and the theoretical spectral 
downshift derived from (44) versus depth within an arbi-
trary scan-line segment of length 1.5 cm of the CIRS ul-
trasound phantom data set A (see Section III for details) 
for three different SNRs (40, 30, and 20 dB) along with 
that for the original RF data. As before, noise effect on 
the proposed estimates is observed by adding zero-mean 
white Gaussian noise of different levels to the measured 
RF data. For consistency analysis, 100 realizations of the 
noisy RF data sets are used to generate Figs. 8(b)–8(d). 
Here again, we see that the center frequency downshift val-
ues obtained from the spectral shift method varies much 
with respect to the theoretical spectral downshift. In addi-
tion, with the decrease in SNR, the standard deviation of 
the center frequency downshift obtained from the spectral 
shift method increases significantly [see Figs. 8(b)–8(d)]. 
In contrast, the estimated average center frequency ( fc,avg) 
downshift by the proposed SCAAE method with nearest 
neighbors (i.e., La = Ll ≠ 0) closely fits the theoretical 
center frequency downshift for up to 30 dB SNR and the 
estimated standard deviations at different SNRs are also 
very low [see Figs. 8(b)–8(d)]. The lack of fit results in a 
bias of 0.0121, 0.0129, and 0.0638 dB/cm/MHz in the fi-
nal estimates at 40, 30, and 20 dB SNR, respectively, with 
respect to the true AC value. The increase in bias due to 
additive noise in the final estimate of AC for the data set 

Fig. 7. Diffraction compensation with respect to the reference spectra. 
The attenuation coefficient (AC) of the reference and sample are 0.5 
and 0.7 dB/cm/MHz, respectively. The beam focus is at 2 cm from the 
transducer face. 

Fig. 6. Estimated full-width at half-maximum (FWHM) of the backscattered echo power spectra. (a) Instantaneous FWHMs (η) of the interrogative 
and neighboring scan-lines (Ll = 5) are shown with dotted lines. Exponentially weighted average FWHM (ηw) estimated from the means ( )η  of each 
instantaneous FWHM (η) is plotted as a constant solid line. (b) Mean of ηw estimated from all the scan-lines in a RF frame. In all the cases, the 
center frequency of the transmit pulse is 10 MHz with true FWHM 0.65 and the attenuation coefficient (AC) is 0.5 dB/cm/MHz. 
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A (with TMP data set B as reference) is also observed to 
be insignificant up to 25 dB SNR (0.0085 dB/cm/MHz at 
25 dB SNR) for the SCAAE method with La = Ll = 5. 
Fig. 8, therefore, reveals that the center frequency down-
shift and hence the acoustic attenuation can be better 
estimated by the proposed SCAAE than the spectral shift 
method.

III. Experimental Results

We test the efficacy as well as provide comparative re-
sults of our proposed methods with the spectral shift [16], 
spectral difference [19], and hybrid [24] methods using the 
CIRS experimental phantom and the in vivo data of a 
normal female breast.

A. Experimental Phantom Results

We have used four sets of TMP data, A, B, C, and D 
of dimension 4 × 4 cm (except for C, which is 5 × 4 cm), 

having homogeneous backgrounds with AC 0.5, 0.7, 0.5, 
and 0.5 dB/cm/MHz, respectively, to evaluate the per-
formances of the proposed and other three techniques in 
this paper. The data set C includes a spherical inclusion 
of radius 0.35 cm, centered at 4 cm below the top surface, 
having AC 0.95 dB/cm/MHz. The data set D includes a 
cylindrical inclusion of radius 0.835 cm, centered at 2 cm 
below the top surface, having AC 0.7 dB/cm/MHz. Be-
cause the data sets A and B are homogeneous and do not 
have any inclusion, we use data sets B, A, B, and B as ref-
erences for the data sets A, B, C, and D, respectively. The 
homogeneous background and the inclusions of the TMP 
are made of Zerdine with sound speed 1540 m/s. These 
data were acquired at the Bangladesh University of Engi-
neering and Technology (BUET) Medical Center, Dhaka, 
Bangladesh, by using a SonixTOUCH Research (Ultraso-
nix Medical Corp., Richmond, BC, Canada) scanner inte-
grated with a L14-5/38 probe operating at 10 MHz with 
65% bandwidth and at a sampling rate of 40 MHz. During 
data acquisition, no TGC was used. The focus was set to 
2 cm away from the transducer face.

Fig. 8. Illustration of the center frequency downshift within an arbitrary 1.5 cm window segment for (a) no additive noise, (b) 40 dB SNR, (c) 30 dB 
SNR, and (d) 20 dB SNR tissue-mimicking phantom (TMP) data obtained by the spectral cross-correlation-based average attenuation estimation 
(SCAAE) (La = Ll = 5) and spectral shift [16] methods. The theoretical center frequency downshift derived from (44) is also plotted. In (b), (c), 
and (d), 100 realizations of the noisy RF data sets are used. The true attenuation coefficient (AC) values for the reference and sample TMP are 0.7 
and 0.5 dB/cm/MHz, respectively. 
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1) RF Data Processing: For the spectral shift, spectral 
difference and hybrid methods, 50% axially and laterally 
overlapping 2-D spatial signal blocks are considered for 
producing stable block power spectrum. In contrast, only 
50% axially overlapping 1-D spatial signal blocks are con-
sidered for the SNAAE and SCAAE methods. The axial 
length of the block should be chosen in such a way that 
it satisfies the stationarity assumption. In the techniques 
compared with the proposed methods, the block size is 
optimized by using the FWHM criterion [16] to obtain 
stable block power spectra. The block power spectrum is 
calculated by averaging the STFT estimates of the gated 
window segments into the block [36]. A 50% axial overlap 
is used between two successive window segments within a 
block. Each block contains 25 lateral scan-lines and the 
power spectrum is estimated from an average of 75 Fourier 
spectra (in the case of homogeneous background). The 
dimension of each block is taken to be approximately 4.70 
× 7.80 mm in the spectral shift, spectral difference, and 

hybrid methods. For all of the methods, the axial length 
of each 1-D gated window is approximately 2.35 mm and 
is gated by the Hanning window to minimize the leakage 
artifacts. The linear fit window is set to 20 mm for esti-
mating the local AC. Considering a fit window of similar 
length is a general practice in the literature. Therefore, 
in our proposed methods, we take advantage of using the 
nearest neighbors from an area that has axial length of 
approximately 20 mm by setting La = 5. However, the 
lateral width of the neighborhood region becomes only 
3.13 mm if we set Ll = 5 for our proposed methods, in 
contrast to the traditional large spatial signal block that 
takes approximately 7.80 mm (i.e., equivalent to 25 ad-
jacent scan-lines as used in this paper) in the lateral di-
rection. However, in the proposed methods, the effective 
size of the neighborhood window (in the axial and lateral 
directions) is smaller than those mentioned previously be-
cause of the use of weighting factors λa and λl [see (19) 
and (42)].

Fig. 9. Illustration of the B-mode and attenuation coefficient (AC) images for tissue-mimicking phantom (TMP) data sets A and B having AC 0.5 and 
0.7 dB/cm/MHz, respectively. Figures (a) and (b) represent the B-mode images, AC images (c) and (i) are produced by the spectral difference, (d) 
and (j) are produced by the hybrid, (e) and (k) are produced by the spectral shift, (f) and (l) are produced by the proposed spectral cross-correlation-
based average attenuation estimation (SCAAE) (for La = Ll = 5), (g) and (m) are produced by the proposed spectral normalization-based average 
attenuation estimation (SNAAE) (for La = Ll = 0), and (h) and (n) are produced by the proposed SNAAE (for La = Ll = 5) methods for the data sets 
A and B, respectively. Data sets B and A are used as references for the data sets A and B, respectively. The linear fit window length is set to 20 mm.
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2) Performance Evaluation Using CIRS TMP: The AC 
imaging performance of the proposed and other published 
techniques for the data sets A and B is shown in Fig. 
9. The data sets B and A are used as references for the 
sample data sets A and B, respectively. Figs. 9(a) and 
9(b) represent the homogeneous B-mode images for the 
sample data sets A and B, respectively. We can see from 
Fig. 9 that, because of using large spatial signal blocks, 
a single AC value corresponds to a large spatial region in 
the AC maps generated by the spectral difference, hybrid, 

and spectral shift methods [see Figs. 9(c)–9(e) and Figs. 
9(i)–9(k), respectively]. Moreover, the tissue pathology 
inside a large spatial bock must be considered uniform, 
which is often not realistic for the heterogeneous tissue. 
However, we can see from Figs. 9(f) and 9(l), generated 
by the SCAAE method, and Figs. 9(h) and 9(n), gener-
ated by the SNAAE method, with La = Ll = 5 that the 
AC values can be generated for all the scan-lines as a 
result of using the NN concept, and the AC maps are 
smoother than those produced by the spectral difference, 

Fig. 10. Illustration of mean attenuation coefficient (AC) profiles generated by different methods for the tissue-mimicking phantom (TMP) data set 
A having AC 0.5 dB/cm/MHz. Mean profiles are estimated along width for AC maps shown in Figs. 9(c)–9(h) by different methods. Profiles are 
produced by the (a) spectral shift, (b) spectral difference, (c) hybrid, (d) spectral cross-correlation-based average attenuation estimation (SCAAE) 
(for La = Ll = 5), (e) spectral normalization-based average attenuation estimation (SNAAE) (for La = Ll = 0), and (f) SNAAE (for La = Ll = 5) 
methods. 

Fig. 11. Illustration of mean attenuation coefficient (AC) profiles generated by different methods for the tissue-mimicking phantom (TMP) data set 
B having AC 0.7 dB/cm/MHz. Mean profiles are estimated along width for AC maps shown in Figs. 9(i)–9(n) by different methods. Profiles are 
produced by the (a) spectral shift, (b) spectral difference, (c) hybrid, (d) spectral cross-correlation-based average attenuation estimation (SCAAE) 
(for La = Ll = 5), (e) spectral normalization-based average attenuation estimation (SNAAE) (for La = Ll = 0), and (f) SNAAE (for La = Ll = 5) 
methods. 
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hybrid, and spectral shift methods. In addition, to show 
the effectiveness of using the NN factor by the proposed 
SNAAE method, we present results for La = Ll = 0 in 
Figs. 9(g) and 9(m). From Figs. 9(g) and 9(m), we see 
that the estimated AC values vary greatly even though 
the attenuation is uniform throughout the sample. The 
consistency and reliability of the estimates by the SNAAE 
and SCAAE methods with La = Ll = 5 are thus well 
ensured as a result of incorporation of spectral-domain 
weighted nearest neighbors.

For better understanding of the estimation accuracy 
and consistency of the proposed methods, we plot the mean 
AC profiles for the AC maps generated by the proposed 
and other techniques in Figs. 10 and 11 for the TMP data 
sets A and B, respectively. From Figs. 10(a) and 11(a), 
we see that the means of the AC profiles produced by the 
spectral shift method are fairly close to the true values 
with moderate standard deviations (STDs), although they 
slightly vary near the transducer face, as shown in Fig. 
10(a). The AC profiles produced by the spectral differ-
ence method have variation in the mean AC values along 
depth and deviate greatly from the true values [see Figs. 
10(b) and 11(b)]. The hybrid method produces better 
AC profiles along the depth except near the transducer 
face, where higher STDs are also seen [see Figs. 10(c) and 
11(c)]. The proposed SNAAE and SCAAE methods with 

La = Ll = 5 produce AC profiles with almost accurate 
mean and lower STD, which indicate better consistency 
and accuracy of the estimation [see Figs. 10(d) and 10(f) 
and Figs. 11(d) and 11(f), respectively] than that of other 
techniques. Note that we have achieved better AC profiles 
without using a large spatial signal block averaging-based 
approach, using a cost function-based approach instead. 
To show the effectiveness of the NN factors, the AC pro-
files are produced by setting La = Ll = 0 in the SNAAE 
method as shown in Figs. 10(e) and 11(e). We see from 
Figs. 10(e) and 10(f) and Figs. 11(e) and 11(f) that the 
STDs in the case of La = Ll = 0 are higher than those in 
the La = Ll = 5 case.

We now show the performance comparison of the pro-
posed and other published techniques for a TMP having 
an inclusion with a different AC than that of the back-
ground. We use TMP data sets C and D for the purpose 
where data set B is used as the reference for both the 
sets. Three rectangular ROIs, X, Y, and Z, are selected 
for the AC estimation as shown in Fig. 12. Note that the 
ROIs X and Z are chosen from the background and the 
ROI Y is chosen from the lesion area. The estimated AC 
and STD values are shown in Tables I and II. We can see 
from these tables that the spectral shift method fails in 
estimating the mean AC values for the ROI Z in the data 
sets C (see Table I) and D (see Table II). The STD of the 
estimated value in the ROI Y is high for the data set C 
(see Table I). The spectral difference method also fails in 
estimating the mean AC value of the ROI X in the data 
set C (see Table I) and of the inclusion in the data set D, 
and the STD of the estimates is higher in all the cases (see 
Tables I and II). The hybrid method however, accurately 
estimates the mean AC values in all three ROIs for the 
data sets C and D (see Tables I and II), showing relatively 
better performance for the data set D. The STD of the 
estimates, however, is high for all the three ROIs in the 
data set C (see Table I). On the other hand, the estimated 
average AC values by the proposed SNAAE and SCAAE 
methods with La = Ll = 5 are closer to the respective 
true values, with lower STDs. To show the effect of using 
the nearest neighbors, we set La = Ll = 0 in the SNAAE 
method. From Tables I and II, we see that the mean AC 
estimates by the SNAAE method with La = Ll = 0 varies 
greatly for the ROI Y in the data set C, and for the ROI 
Z in the data set D (see Tables I and II). Therefore, it 
appears that using spectral domain nearest neighbors is 

Fig. 12. B-mode images of the tissue-mimicking phantom (TMP) data 
sets C and D with inclusions. (a) Data set C contains a spherical inclu-
sion of radius 0.35 cm, and attenuation coefficient (AC) 0.95 dB/cm/
MHz. (b) Data set D contains a cylindrical inclusion of radius 0.835 cm, 
and AC 0.7 dB/cm/MHz. For both data sets, the AC of the background 
is 0.5 dB/cm/MHz. ROIs X, Y, and Z are of dimension 10 × 10 mm 
each, except for the ROI Y of data set C, for which it is 7 × 7 mm.

TABLE I. Data Set C: Estimated Mean AC and STD (in Parentheses) by the Proposed and Other 
Techniques at Three Different ROIs. 

Method
ROI X 

(dB/cm/MHz)
ROI Y 

(dB/cm/MHz)
ROI Z 

(dB/cm/MHz)

Spectral shift [16] 0.47 (±0.09) 0.82 (±0.71) 0.75 (±0.12)
Spectral difference [19] 0.69 (±0.41) 0.88 (±0.69) 0.56 (±0.19)
Hybrid [24] 0.59 (±0.47) 0.84 (±0.51) 0.57 (±0.43)
SNAAE (La = Ll = 0) 0.60 (±0.16) 0.22 (±0.29) 0.49 (±0.14)
SNAAE (La = Ll = 5) 0.48 (±0.29) 1.00 (±0.27) 0.51 (±0.25)
SCAAE (La = Ll = 5) 0.54 (±0.11) 0.91 (±0.10) 0.48 (±0.09)

True AC values: ROI X = 0.50, ROI Y = 0.95, ROI Z = 0.50 dB/cm/MHz.
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effective in accurate AC estimation of a TMP with and 
without inclusions.

B. In Vivo Breast Data Results

To show the efficacy of our proposed methods in prac-
tical applications, we estimate the AC of in vivo normal 
breast data that were acquired at BUET Medical Center, 
Dhaka, Bangladesh from three female volunteers (volun-
teer I, age: 48 years; volunteer II, age: 40 years; and volun-
teer III, age: 58 years) by using a SonixTOUCH Research 
(Ultrasonix Medical Corp.) scanner integrated with a L14-
5/38 probe operating at 10 MHz and at a sampling rate 

of 40 MHz. The fractional bandwidth of the transmitting 
RF pulse by the probe L14-5/38 is 65% at −6-dB spectral 
power level. An institutional review board (IRB) approved 
the study, and prior informed consent was taken from the 
volunteers for further use of these data in research. The 
data size was 4 × 4 cm and the focus was set to 2 cm 
away from the transducer face. The ultrasound beam tra-
verses through the skin, subcutaneous fat, superficial fas-
cia, copper ligaments, glandular tissue, etc. The data pre-
processing steps are described in the previous subsection. 
The B-mode images are shown in Fig. 13. During data 
acquisition, no TGC was used. The reported AC values 
of the soft biological and breast tissues are summarized 
in Table III.

To show the performance of the proposed and other 
published techniques for the in vivo normal female breast 
data, we use the TMP data set A as the reference for all 
three volunteers’ data which are acquired with the same 
transducer and power settings as that of the data set A. 
Three rectangular ROIs X, Y, and Z are selected for the 
AC estimation as shown in Fig. 13. Note that the ROIs 
X and Z are chosen from the fatty tissue regions, whereas 
the ROI Y is chosen from the glandular tissue area. The 
estimated AC and STD values are shown in Tables IV, V, 
and VI for volunteers I, II, and III, respectively.

It is shown in Table III that the reported AC values of 
fatty tissue ranges from 0.35 to 0.60 dB/cm/MHz. We can 
see from the estimates of the ROIs X and Z (fatty region) 
in Tables IV, V, and VI that though the spectral shift 

TABLE II. Data Set D: Estimated Mean AC and STD (in Bracket) by the Proposed and Other 
Techniques at Three Different ROIs. 

Method
ROI X 

(dB/cm/MHz)
ROI Y 

(dB/cm/MHz)
ROI Z 

(dB/cm/MHz)

Spectral shift [16] 0.52 (±0.05) 0.71 (±0.15) 0.19 (±0.19)
Spectral difference [19] 0.37 (±0.60) 0.45 (±0.47) 0.42 (±0.36)
Hybrid [24] 0.51 (±0.07) 0.70 (±0.06) 0.51 (±0.08)
SNAAE (La = Ll = 0) 0.53 (±0.24) 0.72 (±0.34) 0.30 (±0.13)
SNAAE (La = Ll = 5) 0.52 (±0.30) 0.71 (±0.22) 0.50 (±0.27)
SCAAE (La = Ll = 5) 0.49 (±0.07) 0.73 (±0.10) 0.49 (±0.08)

True AC values: ROI X = 0.50, ROI Y = 0.70, ROI Z = 0.50 dB/cm/MHz.

Fig. 13. B-mode images of the in vivo female breast data from (a) volunteer I, (b) volunteer II, and (c) volunteer III. These data correspond to ar-
bitrary regions of normal breast tissues. ROIs X, Y, and Z are of dimension 10 × 10 mm each.

TABLE III. Approximate Attenuation Coefficients for Soft 
Biological and Breast Tissues. 

Tissue type

Attenuation 
coefficient 

(dB/cm/MHz) Source

Soft tissue 0.5–1.0 [37]
Soft tissue (Average) 0.60 [38]
Soft tissue (Average) 0.54 [39]
Fat 0.48 [39]
Fat 0.35 [8]
Fat 0.60 [38]
Fat 0.442 [40]
Breast (Average) 0.75 [39]
Glandular tissue 0.548 [40]
Fibrofatty parenchyma 0.98 [8]
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method is successful in estimating the mean AC values 
closer to the reference range (i.e., 0.35 to 0.60 dB/cm/
MHz) for volunteer I, it gives impractical estimates in the 
ROIs X and Z for volunteer II (see Table V), and in the 
ROI X for volunteer III (see Table VI). The spectral dif-
ference method gives AC estimates that deviate substan-
tially from the reference range (i.e., 0.35 to 0.60 dB/cm/
MHz) in most cases but gives reasonable AC estimates 
in the ROI X for volunteers I and III (see Tables IV, V, 
and VI). The hybrid method produces mean AC values in 
the range 0.48 to 0.51 dB/cm/MHz that are fairly inside 
the reference range (i.e., 0.35 to 0.60 dB/cm/MHz) with 
lower STDs for all three volunteers. From Tables IV, V, 
and VI, we see that the proposed SNAAE and SCAAE 
methods with La = Ll = 5 fairly estimate AC values with 
their means (i.e., 0.43 to 0.54 dB/cm/MHz) into the refer-
ence range (i.e., 0.35 to 0.60 dB/cm/MHz). In addition, 
the mean AC values estimated by the proposed SCAAE 
and SNAAE methods with La = Ll = 5 are close to each 
other, indicating the reliability of the estimation process-
es. On the other hand, for the glandular tissue (ROI Y 
in Tables IV, V, and VI), the spectral shift and spectral 
difference methods fail in estimating the mean AC values 
closer to the reference value (i.e., 0.548 dB/cm/MHz as 
shown in Table III; however, the hybrid method estimates 
mean AC values closer to the reported one (see Tables IV, 
V, and VI). The proposed SNAAE and SCAAE methods 
with La = Ll = 5 compute the AC values in the range 
0.46 to 0.66 dB/cm/MHz and 0.50 to 0.56 dB/cm/MHz, 
respectively, that are reasonably closer to the reported 
value 0.548 dB/cm/MHz. The comparison with the ref-
erence AC value, however, would have been fair if more 
reported AC values were available for the glandular tissue. 
We also see that if nearest neighbors are not used (i.e., La 
= Ll = 0), then the SNAAE estimates (see Tables IV, V, 

and VI) deviate widely from the corresponding reported 
values, which emphasizes the importance of the NN con-
cept introduced in this paper. Overall, it can be said that 
the hybrid, proposed SNAAE and SCAAE (with La = Ll 
= 5) methods estimate AC values reasonably consistent 
with the reported values shown in Table III. However, 
the hybrid (and also the spectral shift and spectral differ-
ence) method uses large spatial signal blocks in generating 
stable power spectra in contrast to the proposed methods, 
for which nearest neighbors are used in estimating consis-
tent AC values in an elegant way. Calculating the AC of 
pathologic breast tissue using the methods that use large 
spatial signal blocks might not be practical, whereas the 
proposed methods significantly overcome this limitation. 
Therefore, it can be said from the practical point of view 
that the proposed SNAAE and SCAAE methods using 
the weighted nearest neighbors are more suitable in AC 
estimation for in vivo breast data.

IV. Conclusions

This paper has introduced two novel methods for spec-
tral domain ultrasonic attenuation estimation of soft 
tissues using exponentially weighted nearest neighbors. 
Assuming that the AC is essentially identical in a small 
tissue region and a continuous function among neighbor-
hoods, we have estimated AC with improved consistency 
and accuracy from the slope of the regression line fitted to 
the modified average midband fit value and also from the 
average center frequency shift along the depth using the 
proposed SNAAE and SCAAE methods, respectively. The 
average midband fit value is obtained from an average 
regression line computed from the exponentially weighted 
neighboring window regression lines, in both the axial 

TABLE IV. Volunteer I: Estimated Mean AC and STD (in Parentheses) by the Proposed  
and Other Techniques at Three Different ROIs. 

Method
ROI X 

(dB/cm/MHz)
ROI Y 

(dB/cm/MHz)
ROI Z 

(dB/cm/MHz)

Spectral shift [16] 0.34 (±0.14) 0.85 (±0.17) 0.35 (±0.11)
Spectral difference [19] 0.63 (±0.60) 0.97 (±0.38) 0.25 (±0.34)
Hybrid [24] 0.51 (±0.08) 0.49 (±0.07) 0.50 (±0.07)
SNAAE (La = Ll = 0) 0.51 (±0.05) 0.40 (±0.30) 0.61 (±0.45)
SNAAE (La = Ll = 5) 0.46 (±0.23) 0.48 (±0.26) 0.54 (±0.31)
SCAAE (La = Ll = 5) 0.43 (±0.09) 0.52 (±0.07) 0.48 (±0.05)

TABLE V. Volunteer II: Estimated Mean AC and STD (in Parentheses) by the Proposed  
and Other Techniques at Three Different ROIs. 

Method
ROI X 

(dB/cm/MHz)
ROI Y 

(dB/cm/MHz)
ROI Z 

(dB/cm/MHz)

Spectral shift [16] —* 0.31 (±0.09) 0.09 (±0.11)
Spectral difference [19] 0.23 (±0.50) 0.79 (±0.53) 0.23 (±0.41)
Hybrid [24] 0.48 (±0.08) 0.49 (±0.05) 0.48 (±0.07)
SNAAE (La = Ll = 0) 0.31 (±0.27) 0.66 (±0.31) 0.24 (±0.26)
SNAAE (La = Ll = 5) 0.43 (±0.36) 0.46 (±0.26) 0.46 (±0.18)
SCAAE (La = Ll = 5) 0.43 (±0.06) 0.50 (±0.05) 0.52 (±0.10)

*Negative estimate.
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and lateral directions, and the average center frequency 
downshift is computed from the maximization of a cost 
function defined from the NSCC of exponentially weighted 
nearest neighbors in both directions. Unlike the conven-
tional approaches, the proposed methods with weighted 
nearest neighbors allow us to estimate the AC values for 
each of the scan-lines independently, which in turn helps 
us to formulate a built-in averaging technique in the spec-
tral domain. The estimated AC values of our experimental 
tests using the TMP have demonstrated better consisten-
cy and reliability of our proposed methods over the other 
reported techniques. In addition, for the in vivo normal 
breast data, the estimated AC values by our methods have 
been found to be consistent with the AC values reported 
in the literature. Further investigations are underway for 
determining the effectiveness of the methods for comput-
ing ACs of in vivo data of patients with breast lesions.
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