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In ultrasound elastography, the strain in compressed tissue due to external deformation is estimated
and is smaller in harder than softer tissue. With increased stress, the nonaxial motions of tissue elements
increase and result in noisier strain images. At high strain, the envelope of the rf signal exhibits robust-
ness to signal decorrelation. However, the precision of strain estimates using envelope signals is much
worse compared to that using the rf signals. In this paper, we propose a novel approach for robust strain
estimation by combining weighted rf cross-correlation and envelope cross-correlation functions. An ap-
plied strain-dependent piecewise-linear-weight is used for this purpose. In addition, we introduce non-
linear diffusion filtering to further enhance the resulting strain image. The results of our algorithm are
demonstrated for up to 10% applied strain using a finite-element modelling (FEM) simulation phantom.
It reveals that the elastographic signal-to-noise ratio (SNRe) and the elastographic contrast-to-noise ratio
(CNRe) of the strain images can be improved more significantly than with other algorithms used in this
paper. In addition, comparative results in terms of the mean structural similarity (MSSIM) using in vivo
breast data show that the strain image quality can be improved noticeably by the proposed method than
with the techniques employed in this work.
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INTRODUCTION

Elasticity imaging is an emerging medical diagnostic tool for displaying mechanical prop-
erties of biological tissues. It is well recognized by medical practitioners that tissue mechani-
cal properties such as stiffness change significantly with changes in tissue pathology. For
example, cancerous tissues may be orders of magnitude stiffer than the surrounding normal
tissues.1 Stiffness can be estimated by sophisticated techniques such as elastography, which
is showing great promise in the detection and/or characterization of breast and prostate tu-
mors,1-4 liver cirrhosis,5 and vascular plaques.6 The strain image is typically computed as the
spatial gradient of local tissue displacements.2-4, 7-9 Other approaches estimate strain directly
from the pre- and postcompression rf echo waveforms or spectra.10-12 There are other catego-
ries of strain estimators, such as hybrid estimators, which combine direct and gradient strain
estimators13 and speckle-tracking-based strain estimators.14
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The postcompression rf echo signal experiences compression inside the tissue structure
due to applied axial stress.10 Therefore, the postcompression rf signal is generally modeled as
a compressed and delayed version of the precompression rf signal.10 The direct strain estima-
tion technique in the time domain10 relies on estimating the compression factor by maximiz-
ing the correlation coefficient between the pre- and stretched postcompression echo
segments. In Ophir et al11 and Alam et al,12 on the other hand, a Fourier-domain-based inco-
herent strain imaging technique is described that uses cross-correlation analysis to estimate
the spectral shift between the pre- and postcompression power spectrum.

Various reported gradient-based strain estimators obtain the strain image from the spatial
gradient of the displacement field, computed by the cross-correlation analysis between a pair
of the windowed pre- and postcompression signal segments. Since the gradient operation
amplifies the high frequency noise due to the large jump in the axial displacement value, the
SNRe of the strain image is generally poorer than that of the direct strain estimators.9, 11 To
minimize the gradient noise, a smoothing operation is generally performed over the dis-
placement field before the gradient operation.9, 15, 16 The smoothing may be performed using a
median filter, linear regression17 or smoothing-spline.9 Wavelet-based denoising schemes
also have been reported,18, 19 which smooth the displacement and strain map. In Varghese et
al,18 wavelet shrinkage denoising is applied to the displacement estimates and in Chen et al,19

a similar denoising technique is applied to the strain estimates. Furthermore, to reduce signal
decorrelation noise, global stretching20 by an appropriate factor is applied to the post-
compression rf signal to increase the correlation between the pre- and postcompression echo
segments, although there is a high probability of missing the hard inclusions in the strain im-
age. In addition, window size and window overlap are two other critical parameters upon
which the image resolution and SNR performance depend. In Varghese et al,21 a two- step
(coarse and fine) rf cross-correlation-based strain estimation algorithm is presented to over-
come the tradeoff between resolution and SNR performance.

To improve the robustness at high strain, some reported strain estimators use only the en-
velope or rf signal in conjunction with the envelope for strain estimation.22-25 In Ophir et al,22 a
theoretical framework is discussed for increasing the dynamic range in the elastogram by us-
ing a composite (combination of the rf and envelope) strain-filter approach. The methods of
Chen et al23 and Varghese et al24 use the pre- and postcompression envelope window
cross-correlation to calculate the sparse displacement (seed) in the tissue at the preliminary
stage and, in subsequent stages, the primary seeds are used to track the displacement in a
gradual finer grid by using the envelope23 or rf24 cross-correlation. Since the strain estimation
variance is high and the SNRe is low for the envelope signal compared to that of the rf signal
at low strain,22 the preliminary estimated seeds or tracking parameters used in Chen et al23 and
Varghese et al24 may be misleading at low strain. In Shiina et al,25 a phase-domain processing
technique is proposed where displacement is calculated by combining the information from
the phase cross-correlation with that of the envelope cross-correlation.

In this paper, we propose a novel approach for robust strain estimation using a combined
piecewise-linear-weighted rf normalized cross-correlation (NCC) and envelope NCC fol-
lowed by denoising by a diffusion filter. The displacement map computed from the rf echo
NCC is known to be ‘clean’ at low strain while very noisy at high strain due to echo
decorrelation. On the other hand, the displacement map computed from the envelope NCC is
less precise and often noisy at low strain while robust to echo decorrelation noise at high
strain. Our novel algorithm combines the advantages of both approaches by defining an ap-
plied-strain dependent piecewise linear weight via which the rf and envelope NCC functions
are added to find the final peak. In this algorithm, as applied strain (and consequently, echo
decorrelation) increases, the relative contribution of the rf NCC decreases. Instead of a sin-
gle global stretching, we use nonstretched and globally-stretched postcompression rf echo
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windows with a precompression counterpart rf window to find the NCC peak to account for
the fact that the rf signal experiences less or no compression in the lesion volume. We also
estimate and correct for lateral shift by using the Poisson’s ratio.26 Finally, we introduce dif-
fusion filtering in the field of elastography. A geometric nonlinear diffusion filtering27 is per-
formed on the calculated strain image. To demonstrate the efficacy of our algorithm, we
evaluate and compare the performance of our algorithm with other reported algorithms us-
ing simulation data by the FEM simulation data, experimental phantom data and in vivo
breast data.

METHODS

Signal model

The backscattered ultrasound rf signals before and after compression can be written in the
simplified 1-D form as10

where, r1(t) and r2(t) represent, respectively, the pre- and postcompression rf echo signals,
s(t) represents the 1-D ultrasound scattering function, p(t) represents the point-spread func-
tion (PSF), a represents the compression factor caused by axial-mechanical pressure to the
medium, �1(t) and �2(t) are the uncorrelated random noise profiles and � represents the
convolution operation. The strain � is related to the compression factor 1/a as,28

where, a � 1 and � << 1.

Strain estimation

Let RF1(i,j) and RF2(i,j) be the pre- and postcompression rf echo frames, respectively. i
represents the axial depth index and j represents rf A-line index. Strain at a particular point
on the strain map (is ,js) is calculated from a corresponding pair of 1-D windowed pre- and
postcompression rf segments, r r js s

1
( , ) and r r js s

2
( , ) , respectively. These segments are selected

as

for 1 � i � Li and j =js and j =js + ( )j
N

ss
a

ap v�
2

�

where, sap represents the approximate applied strain, Na represents the total number of
A-lines in the ultrasound images, Dv represents the distance between samples of the two rf
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echo segments in the axial direction and Li represents the length of the 1-D rf window. The
axial mechanical stress causes a lateral shift of tissue segments. So, the value of j in r r js s

2
( , )

deviates from actual js. Therefore, the Poisson’s ratio is used to interpolate the postcompres-
sion data window for reducing the lateral shift effect in axial strain calculation. It is assumed
that the center A-line (i.e., round(Na /2)) experiences no lateral shift but the zero-lateral-shift
line may differ slightly from a straight line and may not go through the middle exactly.

Before displacement estimation, global stretching on postcompression signal window is
performed to reduce decorrelation noise. If the postcompression signal is stretched by a fac-
tor �, then Eq. (2) yields,10

In a similar fashion, after stretching the postcompression echo window r r js s

2
( , ) by a factor

� (� 1), i.e., r r js s

�
( , ) (i) = r r js s

2
( , ) (�i), the NCC coefficient ��

rf k( ) between r r js s

1
( , ) and

r r js s

�
( , ) is calculated as29

Eq. (7) becomes maximum for � = a with the approximation of p(�t) � p(t). This approxi-
mation is reasonably good up to moderate values of the applied strain. At high strain, this as-
sumption may introduce bias in the strain estimates.

It is to be noted that the lesion area experiences much less or no compression depending on
the stiffness of the mass. Therefore, to image the lesion boundary well, the global stretching
effect is to be avoided in the lesion area. As the position of the lesion is typically unknown,
we use an approach to calculate the NCC of the pre- and postcompression signal windows
with and without global stretching. We use two different values of � (i.e., �max = 1 and �ap =
1-sap) for stretching the postcompression signal to compute the NCC function �� (k).30

We compute the envelopes of the interrogative pre- and postcompression (stretched and
nonstretched) data windows using the Hilbert transform (Eqs. (8) and (9)). Due to its asyn-
chronous nature, the Hilbert transform does not need the center frequency of the ultrasound
system to compute the envelope.

where Hilbert denotes the Hilbert transform. Like Eq. (7), the envelope NCC function is cal-
culated as
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For robust strain estimation, we add weighted NCC functions and computed for the same
interrogative data windows to generate a true peak. A piecewise linear weight, LW, is de-
fined from our observation to control the contribution of the rf and envelope NCC functions
in the combined NCC function. It is to be noted that the amount of echo decorrelation due to
the increase of the applied strain may depend on the data types (e.g., computer-simulated
phantom, tissue-mimicking phantom, in-vivo patient data, etc.). However, at a very low
strain, rf NCC function alone works better than the sum. The effectiveness of using the
weighted summation of the rf NCC function and envelope NCC function are illustrated in
figure 1. A particular point on the strain map is chosen from the homogeneous background of
the FEM-simulation phantom. The rf NCC function, envelope NCC function and the sum of
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FIG. 1 Zoomed views of the normalized cross-correlation functions (NCC function) vs. sample delay for a par-
ticular point on the strain image of the FEM phantom at (a) 1%, (b) 4%, (c) 8% and (d) 12% strain. The point is cho-
sen from the homogeneous background. The corresponding true and calculated strain values are also shown in
tabular form at the bottom of the respective NCC function plot.



the equally-weighted rf and envelope NCC functions of that particular point are plotted for
1%, 4%, 8% and 12% applied strain in figures 1(a)-(d), respectively. The strain values calcu-
lated from these plotted peaks of the rf NCC function, envelope NCC function and the sum of
the equally weighted rf and envelope NCC functions are shown at the bottom of each plot.
We can see from figures 1(a)-(d) that with increase of applied strain, the rf NCC function es-
timate of the strain deteriorates. In contrast, the envelope NCC function generates strain
closer to the true value with increase of the applied strain. Consequently, the sum of the
weighted rf NCC function and envelope NCC function generates better strain values than
that of the rf NCC function at high applied strain. We can also see from figures 1(c), (d) for
8% and 12% applied strains that the peaks of the rf NCC fall below 0.9, which is a clear de-
piction of the increased echo decorrelation.

Considering the above, LW is defined as (details are discussed in the result section)

Here, sknee denotes the ‘knee strain,’ smax denotes the maximum strain and sap denotes the ap-
proximate applied strain.

Using LW, the robust NCC function is calculated as

From the NCC functions, the discrete time-lag is calculated as

We use a cosine interpolation algorithm to calculate the subsample time-lag values. Fi-
nally, the displacement is calculated as

where� � � �� � � �	 	
ap

s s

ap

s s s s si j i j i j ik k( , ) ( , ) ( , ) (( ), (
max max

, ) )j s and kcomp= round ((is � �� amaxD�
) � �is � ��D

�
.

kcomp is the displacement compensated in the shifting operation (1-sap) for the window selec-
tion in Eq. (5). The compensated displacement in the stretching operation of the post-

compression signal before the cross-correlation operation is reinstated by (
L

si
ap

2
) in Eq.

(12). Finally, from the displacement map D(is , js), the strain S(is , js) is calculated using the
least-square-error-based strain estimation method17 with four-points per strain estimate.
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Diffusion filtering

In this article, we also introduce diffusion filtering in elastography for strain-image
denoising. Preserving the lesion edge while denoising is very important in the field of medi-
cal imaging. The diffusion filter performed well in this regard in the field of X-ray and CT
imaging. Here, we use the geometric nonlinear diffusion filter.27 The strain-image update
equation is,

Here, Is

0 is the original strain image and Is

n (n > 0) is the diffused strain image at the nth step,
!p = Ip � Is (p= E, W, N and S ) denotes the difference between the interrogative pixel and one
of the east, west, north and south pixels, respectively, n is the iteration number, "t is the inte-
gration constant and C is the sigmoid diffusivity function defined as

where a represents x or y directions, Da denotes the a-directional intensity difference in a
3×3 window and Pa is defined from Da depending on a threshold value of the image intensity
of the interrogative pixel.27 We use 1 � n � 10 and "t = 0.15.

SIMULATION AND EXPERIMENTAL RESULTS

In this section, we first define the piecewise linear weight to be used in strain calculation
for different types of data. In subsequent subsections, we show the efficacy of using the Pois-
son’s ratio and provide comparative results of our proposed method with the novel
spline-based approach for robust strain estimation in elastography (SBSE)9 and ultrasound
elastography performance enhancement with the wavelet denoising (UPWD)19 method us-
ing the (FEM) phantom, CIRS (CIRS, Inc., Norfolk, VA) experimental phantom and the in
vivo patient data. In addition to subjective evaluation by visual inspection, we compare the
performances of different methods in terms of several numerical indices: elastographic sig-
nal-to-noise ratio (SNRe),31 elastographic contrast-to-noise ratio (CNRe)32 and mean struc-
tural similarity (MSSIM).33

Piecewise linear weight

We observed in our investigation that giving equal weight to both the rf NCC function and
envelope NCC function works the best at high strain. The maximum value of the strain (de-
fined as smax in Eq. (10)) may be assumed to be equal or greater than 0.1, 0.05 and 0.03 for the
FEM simulation, experimental phantom and in vivo breast data, respectively, as greater than
these values might be unrealistic for each of the cases. However, at a low strain, the rf NCCF
alone works better than the sum. Therefore, we define some ‘knee’ strain points for the FEM
phantom, experimental phantom and in vivo data in terms of the NCC peaks; the envelope
NCC function is to be added with the rf NCC function for better strain estimation only when
the applied strain is greater than this knee value. For defining the knee for a particular data
type, NCC peaks are calculated for a background region of the respective strain map. We
know that, with the increase of applied strain, echo decorrelation increases by different rates
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depending on the data types and, consequently, the NCC peaks falls off rapidly. We choose
0.9 as the NCC peak threshold and the knee point is defined as that particular value of the ap-
plied strain, greater than which the NCC peak falls below this threshold (see figure 2). How-
ever, the envelope NCC peak may be greater than 0.9 for a large range of the applied strain,
even for the strain greater than the knee point for all three types of data. But the peak position is
not precise enough at a low strain, thereby leading to a very noisy strain image. To define a
knee point for the in vivo data in figure 2, we use three patient cases where one is fibroadenoma
and two are adenocarcinoma cases. In figure 3, the piecewise linear weight is graphically pre-
sented and from this figure, knee strain can be assumed to be 0.045, 0.03 and 0.005 for the
FEM phantom, experimental phantom and in vivo data, respectively.

FEM simulation

A rectangular phantom of 40 mm × 40 mm was simulated using the Algor (FEM) software
(Algor, Inc., Pittsburgh, PA). It has a homogeneous background with the stiffness of 60 kPa.
A 60 kPa stiffness is close to the average stiffness of normal glandular tissue in the breast.34

The phantom has four circular inclusions of 7.5mm diameter each (Fig. 4(a)). The bottom
left, top, bottom right and middle inclusions were 10, 20, 30 and 40 dB (or 3.16, 10.00, 31.62
and 100.00 times) stiffer than the background, respectively. The bottom of the phantom was
placed on a planar surface and the phantom was in full-slip condition. During the simulation,
the Poisson’s ration was used as 0.495. The phantom was scanned from the top with a probe
of center frequency, f0 = 5 MHz and 60% bandwidth. A nondiffracting transducer beam was

100 HUSSAIN ET AL

FIG. 2 Representation of the normalized cross-correlation (NCC) peaks vs. applied strain for the FEM phantom,
experimental phantom and in vivo data. By taking the NCC peak value 0.9 as a threshold, some knee strain points are
defined for the FEM phantom, experimental phantom and in vivo data.



simulated with a beam width of 1.5 mm. The total number of A-lines was 128. White noise of a
random nature was added to simulate a sonographic SNR of 40 dB.9 Figure 4(b) represents the
ideal elastogram for a 2% applied strain.
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FIG. 4 (a) FEM simulation phantom. It contains four stiff inclusions in a homogeneous background of 60kPa.
(b) Corresponding ideal elastogram.

FIG. 3 Graphical presentation of the piecewise linear weight (LW) for different data types at different percent-
ages of the applied strain



To show the effect of using the Poisson’s ratio for strain estimation, two strain images at
8% applied strain are shown in figure 5. It is clear from figure 5(a) that it is very noisy in both
the left and right sides resulting in lesion edges at bottom that are not clearly visible. On the
other hand, figure 5(b) does not suffer from the same noise.

In figures 6(a)-(t), we show the strain images generated by the SBSE, Eq. (12) with rf NCC
(RFC), Eq. (12) with weighted rf and envelope NCC (W-RFENV), proposed DIFF method
(W-RFENV with diffusion filtering) and UPWD with W-RFENV as the basic method for
four different applied strains. In all the methods, we have used a data window (Li) size of
2.28mm and an interwindow shift (Dv) of 0.28mm. From these figures, it is easily observable
for 2% strain that the SBSE produces somewhat noisy strain image in contrast to the images
formed by the proposed method. The distortion is severe in figures 6(b)-(d) for 6%-10%
strains, respectively, and the inclusions disappear. The strain image for the RFC method is
degraded by noise at 8% and 10% strains. On the contrary, the W-RFENV method generates
very clean strain image at all strains from 2% to 8% while a little noisy at 10%, indicating the
superiority of this method. The diffusion-filtered strain images produced by the W-RFENV
method (DIFF) are the best for each of the strain cases and the background has become al-
most smooth with each of the lesion edges preserved. The wavelet-based UPWD method
smoothes all the images without lesion edges preserved.

Three numerical indices, SNRe, CNRe and MSSIM, are graphically presented in figure 7
to evaluate the strain-image quality generated by the SBSE, RFC, W-RFENV, DIFF and
UPWD with the basic method W-RFENV. In the SNRe plot, the W-RFENV shows better
performance than the RFC at high strains and the DIFF can be said to be the best among all
the methods. Although the UPWD shows better performance, it does not preserve the lesion
edges at all (Figs. 6(s)-(t)). In the CNRe plot, the W-RFENV shows better performance than
the RFC at higher strains and the DIFF shows the expected best performance but the UPWD
makes the performance worse than its basic method while the SBSE is at the bottom. In the
MSSIM plot, although the DIFF and UPWD are close, the latter has bad impact on the lesion
edges, as evident from figure 6. Therefore, the DIFF can be said to be the best.

Phantom experiment

We use a tissue-mimicking (TM) phantom (CIRS, Inc. Norfolk, VA) of dimension 90 mm
× 90 mm × 120 mm with a 3� stiffer (compared to the surrounding) cylindrical inclusion of 2
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FIG. 5 Effects of using Poisson’s ratio at 8% strain. Strain images generated (a) without using Poisson’s ratio
and (b) using Poisson’s ratio.



cm diameter to perform the elastography experiment. In the experiment, an ATL (Bothell,
WA) Ultramark 9 scanner with a 7.5MHz linear array transducer was used to acquire rf-echo
signals from this CIRS phantom. The rf-echo sampling frequency was 20 MHz and quantized
at 14 bits/sample. Before processing the rf data, it was corrected for time-gain-control (TGC).

Figures 8(a)- (j) exhibit the strain images generated by the SBSE, RFC, W-RFENV, DIFF
and UPWD with the basic method W-RFENV for two different strains, respectively. The
strain image generated by the DIFF method (Fig. 8(g)) performs the best amongst all the
methods for 3% strain while other methods are fairly good except that the UPWD method
smoothes the strain image (Fig. 8(i)) at such a level that the lesion visibility is significantly
reduced. At 5% strain, the SBSE method produces a very noisy strain map but the strain map
generated by the RFC method is less noisy in the background. The lesion area of the strain
image generated by the W-RFENV method is less noisy than that of the RFC method for 5%
strain. The DIFF method produces a much smoother strain map and, therefore, the lesion and
the background are distinguishable in the presence of noise at 5% applied strain. The UPWD
method smoothes the strain map without preserving the lesion edges (Fig. 8(j)).

To evaluate the strain image quality of the CIRS phantom at two different applied strains,
the SNRe and CNRe are presented in a table for the SBSE, RFC, W-RFENV, DIFF and
UPWD with the basic method W-RFENV (Fig. 9(b)). Regarding SNRe, it is seen from the
table that the DIFF shows the best performance among all the methods for 3% strain. At 5%
strain, the W-RFENV shows better performance than the RFC, SBSE and UPWD methods,
as expected, while the DIFF-generated strain image exhibits the highest SNRe value. Re-
garding CNRe, we see from the table that the RFC shows better performance than the SBSE
and UPWD methods and DIFF shows the best performance for 3% strain. At 5% strain,
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FIG. 6 Strain images of the FEM simulation phantom generated by different methods. Results (a)-(d) are pro-
duced by the SBSE,9 (e)-(h) are produced by the RFC (�v = 0.5), (i)-(l) are produced by the W-RFENV (�v = 0.5),
(m)-(p) are the diffusion-filtered images of (i)-(l) and (q)-(t) are produced by the UPWD.19



W-RFENV shows better performance, as expected, than the RFC, SBSE and UPWD meth-
ods and the CNRe value of the DIFF-generated strain image is found to be the maximum.

In vivo breast experiment

We chose in vivo breast data for this work from an existing database of 33 cases (patients’
age: 20-75 years). These data were acquired with free-hand compression; benign and malig-
nant cases were confirmed by histopathological reports. A Sonix-500RP (Ultrasonix Medi-
cal Corporation, Richmond BC, Canada) scanner operating at 10 MHz (nominal) was used
to acquire these data at the University of Vermont, USA. The institutional review board
(IRB) approved this study and consent was obtained from patients. Out of 33 cases, two
cases are selected in this work, one of which is a high strain frame (applied strain is approxi-
mately 2.5%, patient is 63 years old and has an adenocarcinoma) and another one is a low
strain frame (applied strain is approximately 0.7%, patient is 38 years old and has a
fibroadenoma).

In figures 10(b)-(f), strain images are produced by the SBSE, RFC, W-RFENV, DIFF and
UPWD with the basic method W-RFENV, respectively, for patient-I and, in figures
10(h)-(l), strain images are produced by the SBSE, RFC, W-RFENV, DIFF and UPWD with
the basic method W-RFENV, respectively, for patient-II. We have also calculated the
MSSIM of each of the images by choosing two strain images (Figs. 11(a) and 11(c) gener-
ated by Hasan et al26 as references for patient-I and patient-II, respectively. For patient-I, we
can see from 10(b)-(f) that except for the SBSE and UPWD, all other methods show good
performance in extracting the cancerous lesion from the backscattered ultrasound rf signals.
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FIG. 7 Performance comparisons of different methods using numerical indices. (a) SNRe vs. applied strain (b)
CNRe vs. applied strain and (c) MSSIM vs. applied strain.



For patient-II, only the SBSE method performs poorly among all other methods (Fig. 10(h)).
The DIFF method shows a smoother background compared to other approaches. In figures
10(c)-(d), strain images generated by the RFC and W-RFENV techniques appear similar in
open eyes. But from the MSSIM table in figures 11(b) and (d), it is seen that the W-RFENV
shows better performance than the RFC. The DIFF shows the best performance in terms of
MSSIM (Figs. 11(b) and 11(d)). However, the UPWD shows very poor performance in gen-
erating the strain images (Figs. 10(f) and 11(b)) for patient-I and (Figs. 10(l) and 11(d)) for
patient-II.
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FIG. 8 Strain images of the CIRS experimental phantom generated by different methods. Results (a)-(b) are pro-
duced by the SBSE, (c)-(d) are produced by the RFC (��= 0.5), (e)-(f) are produced by the W-RFENV (�� = 0.5),
(g)-(h) are the diffusion-filtered images of (e)-(f) (DIFF) and (i)-(j) are produced by the UPWD.



CONCLUSION

In this paper, we have proposed a noise-robust displacement and strain-estimation algo-
rithm in the time domain. We have shown that the combined rf and envelope NCC can pro-
duce better strain images than the rf or the envelope NCC alone. We have also introduced
diffusion filtering to denoise the strain map. Compared to other denoising filters, diffusion
filter has the ability to preserve edges and, therefore, lesion edges can be preserved while
denoising. The effect of considering the lateral shift in the selection of 1-D rf pre- and
postcompression segments has also been shown in our method. Unlike conventional gradi-
ent-based strain estimators, our proposed method can image hard inclusions accurately. It
has been shown by the simulation phantom, experimental phantom as well as by the in-vivo
breast data that the proposed method is more robust for a wide range of strain values than the
other techniques used for comparison in this paper. The quantitative performance indices
also indicate that the proposed method can generate high-quality strain images at high strain
than that of the techniques compared in the literature.
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