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16 Abstract

17 Deep convolutional neural networks (CNNs) are used for the detection of COVID-19 in X-ray 

18 images. The detection performance of deep CNNs may be reduced by noisy X-ray images. To 

19 improve the robustness of a deep CNN against impulse noise, we propose a novel CNN 

20 approach using adaptive convolution, with the aim to ameliorate COVID-19 detection in noisy 

21 X-ray images without requiring any preprocessing for noise removal. This approach includes 

22 an impulse noise-map layer, an adaptive resizing layer, and an adaptive convolution layer to 

23 the conventional CNN framework. We also used a learning-to-augment strategy using noisy 

24 X-ray images to improve the generalization of a deep CNN. We have collected a dataset of 

25 2,093 chest X-ray images including COVID-19 (452 images), non-COVID pneumonia (621 

26 images), and healthy ones (1,020 images). The architecture of pre-trained networks such as 

27 SqueezeNet, GoogleNet, MobileNetv2, ResNet18, ResNet50, ShuffleNet, and EfficientNetb0 

28 has been modified to increase their robustness to impulse noise. Validation on the noisy X-ray 

29 images using the proposed noise-robust layers- and learning-to-augment strategy-incorporated 

30 ResNet50 showed 2% better classification accuracy compared with state-of-the-art method.

31 Keywords: Convolutional neural network, impulse noise, X-ray image classification, adaptive 

32 convolution, COVID-19.
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33 1. Introduction

34 1.1. Detection of COVID-19 in X-ray Images

35 Coronavirus disease 2019 (COVID-19) has a devastating effect on public health, 

36 industry, and global economy. One major need to fight the pandemic is to have the ability to 

37 detect COVID-19 cases early, such as via the chest X-ray image examination. Prior studies  

38 suggest that chest X-ray images have beneficial diagnostic features as adjuvant diagnostic tool 

39 in COVID-19 compared to RT-PCR  and can be useful to detect and initiate treatment early 

40 [1]. Deep learning algorithms such as deep convolutional neural networks (CNNs) previously 

41 demonstrated great promise in various disease diagnosis, often better than expert clinicians [2]. 

42 Thus, detection of COVID-19 in chest X-ray images using deep learning can also be used as a 

43 potential tool for evaluating and monitoring COVID severity [1-6].

44 1.2. Classification of X-ray Images using CNN

45 A CNN is an effective tool for image classification, which has been used in various fields 

46 such as health, economics, and agriculture [4-8]. Last year, various types of CNNs were 

47 extensively used in COVID-19 detection in medical images. For example, to detect COVID-

48 19 in chest X-ray and computed tomography (CT) images, Jia et al. [2] used two variants of 

49 CNN, namely, improved-MobileNet and improved-ResNet. These deep CNNs were designed 

50 to dynamically combine features from different layers, a property that the baseline MobileNet 

51 and ResNet lacked. The improved-MobileNet has been used in the detection of COVID-19, 

52 viral and bacterial pneumonia (i.e., non-COVID pneumonia), and healthy images. Likewise, 

53 the improved-ResNet has been employed to discriminate COVID-19, non-COVID pneumonia, 

54 and healthy images. These approaches achieved an accuracy of 99.6% on chest X-ray images 

55 and 99.3% on the CT images. Thakur et al. also used deep CNN on X-ray images to detect 

56 COVID-19 [9]. This model was trained for binary classification on a database of X-ray images, 

57 containing 1,917 COVID-19 and 1,960 healthy cases. This method achieved a classification 

58 accuracy of 99.64%, F-measure of 99.59%, and receiver operating characteristics (ROC) of 

59 100%. Munusamy et al. designed a CNN architecture by combining the Fractal blocks and U-

60 Net [10] to classify X-ray images [11], and demonstrated better classification performance 

61 compared to state-of-the-arts such as ResNet50 [12], Xception [13], and InceptionResNetV2 

62 [14]. In addition, their model was easily trainable on chest X-ray images. An ensemble model 

63 of ResNet50 Error Correcting Output Code (ECOC) was developed by Pathan et al. for the 

64 detection of COVID-19 in chest X-ray images [15]. The ensemble model included CNNs, 
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65 which were optimized using Grey Wolf Optimizer [16] and Whale Optimization [17]. They 

66 achieved a multiclass classification accuracy of 98.8%, when the model classified chest X-ray 

67 images among COVID-19, healthy, and viral pneumonia cases. Mostafiz et al. proposed a 

68 hybrid method of CNN and discrete wavelet transform to detect COVID-19 in chest X-ray 

69 images [18]. After a preprocessing operation of X-ray image enhancement and segmentation, 

70 image features were extracted by deep CNN and discrete wavelet transform. Afterwards, the 

71 optimum features with minimum redundancy and maximum relevance were selected via the 

72 recursive feature elimination process. Finally, a random forest-based bagging method was used 

73 for the COVID-19 detection task, which demonstrated a classification accuracy of 98.5%.

74 1.3. Impulse Noise in X-ray Images

75 Chest X-ray images often get corrupted by the impulse (salt and pepper) noise [19-24]. 

76 This corruption is typically caused by a malfunctioning X-ray receiver, bit errors in X-ray 

77 image transmission, and faulty memory locations in hardware. The impulse noise corrupts pixel 

78 intensities in a X-ray image, causing the corrupted pixel having either the maximum or 

79 minimum gray level value. The bipolar impulse noise is defined as:

80 , (1) 𝑝 (𝑧) ={𝑃𝑎                   𝑧=𝑎          
𝑃𝑏                   𝑧=𝑏          

0                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

81 where  denotes the intensity of an impulse noise-corrupted pixel in a X-ray image. If , 𝑧 𝑏>𝑎
82 intensity  will be seen as the brightest dot on the X-ray image and  will be seen as the 𝑏 𝑎
83 darkest dot. On the other hand, if either  or , then the noise is of unipolar type. Finally, 𝑃𝑎 =0 𝑃𝑏 =0
84 if , then the impulse noise will be similar to salt and pepper having a randomly distributed 𝑃𝑎 ≈𝑃𝑏

85 value. When the impulse noise reduces the quality of X-ray images considerably, detection of 

86 COVID-19 in the corrupted X-ray image becomes difficult. To address this problem, Lu et al. 

87 developed a method for impulse noise removal using a weighted neighbor pixel-based gain 

88 factor adaption [19]. In this method, all pixels in a selected window are sorted and grouped 

89 based on the gray level variation. After grouping the pixels, the median value and distribution 

90 ratio are calculated for each group to estimate the values of the gain factors. These gain factors 

91 eventually are used as wights for neighboring pixels that replace the noise-corrupted pixel. 

92 Using a fuzzy switching median filter and the concept of information sets, Arora et al. 

93 introduced a filter to remove the impulse noise from images [23]. This method works in two 

94 phases: the first phase detects pixels corrupted by the impulse noise, and the second phase 

95 operates the filter on noisy pixels using an adaptive switching criterion. Satti et al. proposed an 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3979334

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



4

96 impulse noise removing filter using min-max average pooling technique [22]. This approach 

97 showed an increase in peak signal to noise ratio (PSNR) of 1.2 dB in the restored medical 

98 images compared to the noisy counterparts. The classification performance of a CNN gets 

99 deteriorated, when input images are corrupted by the impulse noise [25]. Preprocessing input 

100 images to remove noise before feeding to a CNN usually improves the classification 

101 performance of the CNN. However, state-of-the-art filtering-based noise removing approaches, 

102 discussed above, are often time- and computation-intensive. 

103 1.4. Proposed Method

104 To increase the robustness of a CNN to the impulse noise, we propose a novel CNN 

105 framework including a built-in noise-map layer, an adaptive resizing layer and an adaptive 

106 convolution layer. We summarize our technical contributions as:

107 1. We introduce a noise-map layer module in the CNN framework that generates a binary 

108 noise-map indicating the spatial location of noisy and normal pixels in an image, which 

109 ultimately helps to improve the task performance of a CNN by letting it avoid the noisy 

110 pixels during training. This module also helps to avoid preprocessing of images to remove 

111 noise.

112 2. We also introduce an adaptive image resizing module in the CNN framework that can 

113 simultaneously resize an image and remove noise from at the front end of a CNN. 

114 3. Further, we introduce an adaptive convolution layer module that incorporates the noise-

115 map from the first module into the convolution estimation function, which helps to 

116 effectively shut off remaining noisy pixels in the input image.

117 4. We show the efficacy of the proposed deep CNN framework on clinical X-ray images of 

118 COVID-19, non-COVID pneumonia and healthy subjects. 

119 The remainder of this paper is structured as follows. We describe our dataset in Section 2. In 

120 Section 3, we detail the novel components of a CNN. Extensive experimentation and 

121 corresponding results are discussed in Section 4. The conclusion is presented in Section 5.

122 2. Data

123 We accessed a database of 2,093 chest X-ray images in the Esfarayen University of 

124 Medical Science, Esfarayen, Iran. Table 1 summarizes the patients’ diagnoses. All the X-ray 

125 images were in Joint Photographic Experts Group (JPEG) file format. We resized all X-ray 

126 images to a common input size for the pre-trained CNNs (i.e., SqueezeNet, GoogleNet, 

127 MobileNetv2, ResNet18, ResNet50, ShuffleNet, and EfficientNetb0). We show samples of 
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128 collected chest X-ray images (noisy and noise-free) for COVID-19, healthy, and non-COVID 

129 pneumonia cases in Figure 1. 

130 Table 1: Summary of Patients’ Diagnoses.

Diagnosis Number of subjects/patients Data collection timeline (years)

COVID-19 452 2020-2021

Non-COVID pneumonia 1,020 2018-2021

Healthy 621 2018-2021

131
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(a)
COVID-19 

(b)
Healthy

(c)
Non-COVID pneumonia

132 Figure 1: Sample chest X-ray images of (a) COVID-19, (b) healthy, and (c) non-COVID 
133 pneumonia cases from our dataset. The first row contains the noise-free images. The second and 
134 third rows show noise-corrupted images with the noise density of 5% and 10%, respectively. 
135
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136 3. Methodology

137 In this section, detection of COVID-19 in noisy X-ray images using noise-robust deep 

138 CNN based on adaptive convolution is presented which classifies impulsive noisy images 

139 without any preprocessing for noise removal. Figure 2 illustrates the general process of the 

140 proposed method for detection of COVID-19 in noisy images.

141 3.1. Impulse Noise Detection

142 The pixels corrupted by the impulse noise can be detected using the analysis of local 

143 statistical properties of an image. In this paper, we use a switching technique-based fuzzified 

144 degree [26] to detect noise-free and noisy pixels in an image. Figure 3 illustrates the pipeline 

145 of 4-step noise detection procedure. 

146 Step 1. Let  denotes a selected processing window, which is a small patch of the corrupted 𝑥
147 image centered at location ( ). The size of the processing window is  pixels. The processing 𝑖,𝑗 5×5
148 window is further divided into  pixels overlapped sub-windows (see Figure 4). 3×3
149

150
Input image Noise 

detection
Adaptive 
resizing

Adaptive 
convolution Output

151 Figure 2: The schematic diagram of the proposed method.

152

153
Repeat for all of pixels

1 2 3 4

154 Figure 3: The 4-step pipeline of noise detection using the analysis of local statistical properties of 
155 an image [26].

156
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x(i+2,j-2)x(i+1,j-2)x(i,j-2)x(i-1,j-2)x(i-2,j-2)

x(i+2,j-1)x(i+1,j-1)x(i,j-1)x(i-1,j-1)x(i-2,j-1)

x(i+2,j)x(i+1,j)x(i,j)x(i-1,j)x(i-2,j)

x(i+2,j+1)x(i+1,j+1)x(i,j+1)x(i-1,j+1)x(i-2,j+1)

x(i+2,j+2)x(i+1,j+2)x(i,j+2)x(i-1,j+2)x(i-2,j+2)

157 Figure 4: The  pixels processing window is divided into  pixels overlapped sub-windows. 𝟓×𝟓 𝟑×𝟑

158 Step 2. In this step, we calculate the absolute mean differences. Let  indicates  sub-window 𝑠𝑙 𝑙𝑡ℎ

159 for . Medians of nine sub-windows are estimated as [26]: 𝑙=1,2,…,9
160 (2) 𝑣𝑙 =𝑀𝑒𝑑𝑖𝑎𝑛(𝑠𝑙 ) ,  𝑙=1,2,…,9.
161 These median values of nine sub-windows (in equation 2) are put in ascending order as [26]:

162                   (3) 𝑉=[𝑣1 ,𝑣2 ,𝑣3 ,𝑣4 ,𝑣5 ,𝑣6 ,𝑣7 ,𝑣8 ,𝑣9  ].
163 The absolute mean differences are then calculated as:

164 (4) 𝑅1 =𝑀𝑒𝑎𝑛(𝑥) ‒𝑥(𝑖,𝑗) ,

165 (5) 𝑅2 =∑9
𝑘=2 (𝑉𝑘 ‒𝑉𝑘‒1 ),

166 where,  and  are employed to determine noisy pixels of the image. 𝑅1 𝑅1

167 Step 3. In this step, we used fuzzy logic to detect if the current pixel is noisy or noise-free. To 

168 do this, we assign the degree of impulsiveness to each pixel by using fuzzy gradient values 

169 [26]. To distinguish noisy pixels from edges, the difference between the gradients is 

170 classified into nondeterministic features (  or ). Figure 5 shows the fuzzy membership 𝐿𝑎𝑟𝑔𝑒𝑆𝑚𝑎𝑙𝑙
171 functions  and  that represent fuzzy set  and fuzzy set , respectively. The fuzzy 𝑆𝑚𝑎𝑙𝑙(𝑥)𝐿𝑎𝑟𝑔𝑒(𝑥) 𝑆𝑚𝑎𝑙𝑙 𝐿𝑎𝑟𝑔𝑒
172 membership functions are defined as [26]:

173 (6) 𝑆𝑚𝑎𝑙𝑙 (𝑅1 ,𝜏1 ,𝜏2 ) ={
1,                                 𝑅1 <𝜏1

(𝑅1 ‒𝜏1

𝜏1 ‒𝜏2 ),           𝜏1 ≤𝑅1 <𝜏2

0,                                 𝑅1 ≥𝜏2

174 (7) 𝐿𝑎𝑟𝑔𝑒 (𝑅1 ,𝜏1 ,𝜏2 ) ={
1,                                 𝑅1 <𝜏1

(𝑅1 ‒𝜏1

𝜏2 ‒𝜏1 ),           𝜏1 ≤𝑅1 <𝜏2

0,                                 𝑅1 ≥𝜏2
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175 , (8) 𝑟1 =𝑆𝑚𝑎𝑙𝑙(𝑅1 ,𝜏1 ,𝜏2 ).𝑆𝑚𝑎𝑙𝑙( 𝑅2 , 𝜏1 , 𝜏2 )
176 (9) 𝑟2 =𝑆𝑚𝑎𝑙𝑙(𝑅1 ,𝜏1 ,𝜏2 ).𝐿𝑎𝑟𝑔𝑒 (𝑅2 ,𝜏1 ,𝜏2 ) ,
177            (10) 𝑟3 =𝐿𝑎𝑟𝑔𝑒(𝑅1 ,𝜏1 ,𝜏2 ).𝑆𝑚𝑎𝑙𝑙 (𝑅2 ,𝜏1 ,𝜏2 ) ,
178            (11) 𝑟4 =𝐿𝑎𝑟𝑔𝑒(𝑅1 ,𝜏1 ,𝜏2 ).𝐿𝑎𝑟𝑔𝑒 (𝑅2 ,𝜏1 ,𝜏2 ) ,
179 where  and  are threshold parameters. The fuzzy membership degree is defined as [26]: 𝜏1 𝜏2

180            (12) 𝜇𝑑𝑒𝑔𝑟𝑒𝑒 =𝑀𝑎𝑥(𝑟1 ,𝑟2 ,𝑟3 ,𝑟4 ) .
181 Step 4. In the fourth step, the switching technique based fuzzified degree [26] is applied to 

182 detect the noisy pixels. As shown in Figure 6, if , the interrogated pixel is noise-free. 𝜇𝑑𝑒𝑔𝑟𝑒𝑒 =𝑟4

183 Otherwise, the interrogated pixel is noisy. Thus, a noise-map,  can be defined as: s

𝑠𝑖𝑗 ={0            If 𝜇𝑑𝑒𝑔𝑟𝑒𝑒 =𝑟1  𝑜𝑟 𝑟2  𝑜𝑟 𝑟3  (𝑖.𝑒., 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑛𝑜𝑖𝑠𝑦)           
1            If 𝜇𝑑𝑒𝑔𝑟𝑒𝑒 =𝑟4   (𝑖.𝑒., 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑟𝑒𝑔𝑢𝑙𝑎𝑟)                           ,(13)

184 where  is the location of the interrogated pixel. The noise-map  for a whole image is (𝑖 ,𝑗) s
185 then constructed by examining all the pixels in that particular image using the above-mentioned 

186 technique. 

187

Small(x) Large(x)

0
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188 Figure 5: Fuzzy membership functions ‘ ’ or ‘ ’. 𝑳𝒂𝒓𝒈𝒆 𝑺𝒎𝒂𝒍𝒍

189

•    Noisy-PixelIf ( 𝜇𝑑𝑒𝑔𝑟𝑒𝑒 =𝑟1 )

•    Noisy/Edge PixelIf ( 𝜇𝑑𝑒𝑔𝑟𝑒𝑒 =𝑟2  

𝑜𝑟  𝑟3 )

•    Noise-free/Edge PixelIf ( 𝜇𝑑𝑒𝑔𝑟𝑒𝑒 =𝑟4 )

190 Figure 6: Noise detection rules.
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191

The noise map

X-ray image

192 Figure 7: Two channels for each image.

193 In this paper, to make our CNN framework robust to impulse noise, we use the estimated noise 

194 map as the second channel for the corresponding X-ray image, when fed to the CNN. As shown 

195 in Figure 7, each image contains two channels: noise-map channel, grayscale X-ray channel. 

196 3.2. Adaptive Resizing

197 All input images to a CNN (e.g., GoogleNet, MobileNetv2, ResNet18, ResNet50, 

198 ShuffleNet, EfficientNetb0, etc.) usually have a common dimension (e.g.,  pixels). Also, if a 244×244
199 model is pretrained, the dimension of the input images during finetuning should match to the 

200 dimension of the images on which the model is pretrained. Since the models we use in this 

201 paper are pretrained, we need to resize our X-ray images so that their dimension matches to the 

202 dimension of the images used in pretraining. In this paper, rather than using a conventional 

203 interpolation-based image resizing approach, we adopted an adaptive image resizing approach, 

204 which is more robust on noisy images. To illustrate the mechanism of this resizing approach, 

205 we demonstrate resizing two  pixels noisy images with low and high noise density, 64×64
206 respectively, to  pixels noise-reduced images in Figure 8. In the first step, an image is divided 8×8
207 into  blocks for subsampling (Figure 8b). We can see in Figure 8c that if the pixel value in the 8×8
208 resized image is taken from the central pixel of the corresponding  block, then noisy pixel 8×8
209 values from the original image are easily passed to the resized image. To avoid this issue, we 

210 adopt the adaptive resizing [25] technique, where noisy pixel values do not get passed to the 

211 resized image (Figure 8d). After resizing images using corresponding noise-maps, we also 

212 resize the noise-maps so that the updated noise-map size matches the updated image size. 

213 Assuming that w is a set of candidate pixels to resize in the selected sub-window, updated 

214 noise-mapa are obtained using following. 

If (all of pixels in w is noisy) then

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3979334

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



10

Set the corresponding coordinates of updated noise-map to noisy.

Else

Set the corresponding coordinates of updated noise-map to non-noisy.

End if

215 This adaptive pixel selection works by eliminating noisy pixels in reduceing the image 

216 size and makes the noisy pixels are not participated in the process of X-ray image dimension 

217 reduction.

218 In this study, we incorporated this adaptive resizing function as a layer in the CNN 

219 framework to increase its robustness to noisy X-ray images. In the proposed adaptive resizing 

220 layer, an original noisy X-ray image (e.g.,  pixels) is resized to  pixels by using the 512×512 224×224
221 information of the spatial distribution of noise, derived from the corresponding noise-map 

222 (discussed in Section 3.1). Using this adaptive resizing layer in our CNN framwork, as shown 

223 in Figure 9, we can avoid the transmission of noisy pixels from the original X-ray image to the 

224 resized X-ray image. Figure 10 illustrates the pipeline of our adaptive image resizing at the 

225 front end of the CNN.
226
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(a)
Image with noisy 
(dark) and regular 

(blue) pixels

(b)
Dividing the image into 

 pixels blocks (small 8×8
blue boxes) for 
subsampling

(c)
Subsampled image 

using the central pixel 
selection method

(d)
Subsampled image 
using the adaptive 
resizing method

227 Figure 8: Comparison of image resizing techniques using the central pixel selection and 
228 adaptive pixel selection (i.e., adaptive resizing).
229
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230

(a)
Use the current pixel in 

resizing image.

Switching mechanism based on noise map

a) Non-corrupted pixel
b) Noisy pixel

(b)
Do not use the current pixel in

resizing image.

Original dataset Noise map

Sw
itc

h

231 Figure 9: The architecture of the adaptive resizing layer [25].

232

Adaptive resizing
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ol
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n 

an
d 

po
ol
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g

233 Figure 10: The pipeline of adaptive resizing operation at the front end of the CNN.

234 3.3. Adaptive Convolution

235 After adaptive resizing (discussed in Section 3.2), there still might exist noisy pixels in the X-

236 ray images (second row of Figure 8d). Therefore, we design our convolution layer adaptive to 

237 make it more robust to image noise. Typically, a new feature map  is generated by a 𝑦
238 convolution layer of a CNN as [27]:

239          (14) 𝑦𝑖,𝑗,𝑘 =𝐰𝑘
𝑇  𝐱𝑖,𝑗 +𝑏𝑘 ,

240 where  is the location coordinate of the kth kernel,  is the input image/feature patch,  (𝑖 ,𝑗)  𝐱𝑖,𝑗 𝐰𝑘

241 is the learned weight matrix of the kth convolution kernel, and  is the bias of the convolution 𝑏
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242 layer. In this paper, we modify the conventional convolution layer of a CNN to make it more 

243 robust to noise by incorporating our noise-map  as [25]: 𝑠
244 .           (15) 𝑦𝑖,𝑗,𝑘 =𝐰𝑘

𝑇  𝐱𝑖,𝑗  𝒔𝑖𝑗  +𝑏𝑘

245 Since noise-map s is a binary map, incorporating it into the convolution kernel helps not to 

246 propagate noisy pixel value forward along the network. We illustrate this operation in Figure 

247 11, where we see that the noisy pixels get shut off (i.e., having a value of 0) during feature 

248 calculation. Figure 12 illustrates the architecture of the adaptive convolutional layer for 

249 robustness of deep CNN to noisy X-ray images. Eliminating noisy connections avoids inputting 

250 impulsive noisy pixels to the next layers. 

251

252

In
pu

t

Kernel
Output

253 Figure 11: Schematic diagram illustrating the shutting off a noisy pixel during convolution 

254 operation in a CNN convolution layer. 

255

256

(a)
(n×n) convolutions

Updated
noise map

Switching mechanism based on noise map

a) Non-corrupted pixel
b) Noisy pixel

(b)
Drop noisy connections and then

(n×n) convolutions

Sw
itc

h

257 Figure 12: The architecture of the proposed noise-robust adaptive convolution layer.

258 3.4. Learning-to-Augment Using Noisy Data

259 Adding some noise to data (e.g., the impulse noise, the Gaussian noise) is a strategy for 

260 data augmentation [8]. We have employed a learning-to-augment strategy [8] using noisy X-

pi
xe

ls
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261 ray images to generate the new data. The noise density ( ) is the parameter of impulse noise 𝑑
262 [28-30] and the mean ( ) and variance ( ) are parameters of the Gaussian noise [31, 32]. As 𝜇 𝑣
263 shown in Figure 13, the learning to augment using noisy data is composed of a noisy data 

264 generator, a controller, an augmenter, and child models. Firstly, the original dataset is 

265 partitioned into two folds. Then a noisy data generator adds impulse noise and Gaussian noise 

266 to the X-ray images in each fold, separately. The augmenters generate new X-ray images based 

267 on the parameters that the Bayesian optimizer has found. Then, each fold is separately fed to 

268 the child CNN models. Using the output of child CNNs, the controller increases performance 

269 of weak policies and keeps improved policies. The controller employs the Bayesian 

270 optimization algorithm to optimize augmentation policies (the parameters of impulse noise and 

271 Gaussian noise). Assuming that  is the search space and is the loss function of a child CNN, 𝒢 𝑓 
272 the Bayesian optimization algorithm can be defined as [8]:

273            (16) 𝑦=𝑎𝑟𝑔 𝑚𝑖𝑛𝐺  𝑓 (𝐺) . 𝐺∈𝒢
274 The optimizer algorithm in equation 16 obtains  that minimizes  for  in a bounded domain 𝑦 𝑓(𝐺)  𝐺
275 . The final loss function of the Bayesian optimization algorithm is composed of the individual 𝒢
276 loss values from child CNNs. The optimization process lasts until the optimized parameters is 

277 achieved.

278

279

Add impulse 
noiseDataset

Train with 
child CNN 

(Augmenter)

Control with 
Bayesian 
optimizer

Select top politics

New data 
samples

Set impulse 
noise density

Adjust the parameters of each 
noise type using the controller

Make a copy 
of the dataset

Repeat
until maximum 

iteration number is 
reached 

280 Figure 13: Flowchart of learning-to-augment using noisy data.

281 4. Implementation Details 

282 In this section, we discuss detials of our extensive experimental setup in detecting 

283 COVID-19 in noisy X-ray images. We divided our X-ray dataset into training (70%), validation 

284 (10%), and test (20%) sets as shown in Table 2. We also list the types of CNNs (i.e., 

285 conventional CNN or noise-robust CNN) used during training, validation, and testing in Table 

286 3. We used learning-to-augment strategy using noisy data only in the training and employed 

287 the proposed noise-robust method only in the testing phase. This overall strategy ensures that 
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288 our model learnes from both noise-free and noisy data. Learning-to-augment strategy using the 

289 noisy X-ray images starts by setting the impulse noise density. The noisy data generator creates 

290 X-ray images corrupted by the impulse noise. Bayesian optimization algorithm finds the 

291 optimum data augmentation policy (i.e., the impulse noise density, ), where AlexNet [27] is 𝑑
292 used as the backbon. The Bayesian optimizer found the optimal value of  to be 22%. 𝑑

293 Table 2: Data partitioning for training, validation, and testing in this study.

Phase Data splitting # of original images # of augmented images Total # of images

Train 70% 1,466 1,466 2,932

Validation 10% 209 - 209

Test 20% 418 - 418

294 Table 3: Types of CNNs (conventional/noise-robust) used in training, validation, and testing.

Phase Type of CNN # of noise-free images # of noisy images Total # of images

Train Conventional CNN 1,466 1,466 2,932

Validation Conventional CNN 209 - 209

Test The noise-robust CNN - 418 418
295
296 We incorporated our proposed noise-robust modules in the state-of-the-art networks such 

297 as SqueezeNet [33], GoogleNet [34], MobileNetv2 [35], ResNet18 [12], ResNet50 [12], 

298 ShuffleNet [36], and EfficientNetb0 [37]. As an example, Figure 14 and Table 4 show the 

299 architecture and configuration of our proposed model using pre-trained SqueezeNet, 

300 respectively, for the classification of X-ray images. We can see in Figure 14 and Table 4 that 

301 the SqueezeNet model takes input through the proposed adaptive resizing layer that resizes an 

302 X-ray image from  pixels to  pixels, where new interpolated pixel values are estimated from 512×512 227×227
303 the noise-free neighboring pixels in the original image. Also, in the first convolutional layer, 

304 the convolution kernel incorporates the binary noise-map so that noisy pixel values of the input 

305 images do not propagate to the next layer. Similarly, the adaptive resizing layer is incorporated 

306 in other deep CNNs (GoogleNet, MobileNetv2, ResNet18, ResNet50, ShuffleNet, and 

307 EfficientNetb0) to robustify those to impulse noise as well. Also, the first convolution layer of 

308 all the networks were modifiedto incorporate the adaptive convolution to make those robust to 

309 noise. It is also woth noting that the size of the original X-ray images in our dataset is larger 

310 than the usual input image size of pre-trained deep CNNs. Consequently, after performing 

311 adaptive resizing, an input image usually becomes less noisy before it is fed to the adaptve 

312 convolution layer. 
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313
314 Figure 14: The architecture of the proposed noise-robust SqueezeNet model.
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315 Table 4: The configuration of the proposed noise-robust SqueezeNet model.
# Type Descriptions

0 Adaptive Resizing 512×512×3 images

1 Input of Image
and Noise-Map

227×227×3 images 
with 'zerocenter' normalization

2 Adaptive Convolution 64 3×3 convolutions 
stride [2  2] and padding [0  0  0  0]

3 ReLU

4 Max Pooling 3×3 max pooling 
stride [2  2] and padding [0  0  0  0]

5 Convolution 16 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

6 ReLU

7 Convolution 64 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

8 ReLU

9 Convolution 64 3×3 convolutions 
stride [1  1] and padding [1  1  1  1]

10 ReLU

11 Concatenation Depth concatenation of 2 inputs

12 Convolution 16 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

13 ReLU

14 Convolution 64 3×3 convolutions 
stride [1  1] and padding [1  1  1  1]

15 ReLU

16 Convolution 64 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

17 ReLU

18 Concatenation Depth concatenation of 2 inputs

19 Max Pooling 3×3 max pooling with 
[2  2] and padding [0  1  0  1]

20 Convolution 32 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

21 ReLU

22 Convolution 128 3×3 convolutions 
stride [1  1] and padding [1  1  1  1]

23 ReLU

24 Convolution 128 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

25 ReLU

26 Concatenation Depth concatenation of 2 inputs

27 Convolution 32 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

28 ReLU

29 Convolution 128 3×3 convolutions 
stride [1  1] and padding [1  1  1  1]

30 ReLU

31 Convolution 128 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

# Type Descriptions

35 Convolution 48 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

36 ReLU

37 Convolution 192 3×3 convolutions 
stride [1  1] and padding [1  1  1  1]

38 ReLU

39 Convolution 192 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

40 ReLU

41 Concatenation Depth concatenation of 2 inputs

42 Convolution 48 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

43 ReLU

44 Convolution 192 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

45 ReLU

46 Convolution 192 3×3 convolutions 
stride [1  1] and padding [1  1  1  1]

47 ReLU

48 Concatenation Depth concatenation of 2 inputs

49 Convolution 64 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

50 ReLU

51 Convolution 256 3×3 convolutions 
stride [1  1] and padding [1  1  1  1]

52 ReLU

53 Convolution 256 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

54 ReLU

55 Concatenation Depth concatenation of 2 inputs

56 Convolution 64 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

57 ReLU

58 Convolution 256 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

59 ReLU

60 Convolution 256 3×3 convolutions 
stride [1  1] and padding [1  1  1  1]

61 ReLU

62 Concatenation Depth concatenation of 2 inputs

63 Dropout 50% dropout

64 Convolution 1000 1×1 convolutions 
stride [1  1] and padding [0  0  0  0]

65 ReLU

66 Pooling Global Average Pooling

67 Softmax

68 Classification Output
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316 Table 5: Properties of the pretrained CNN models we used in this study.

Network Depth Size Parameters (Millions) Input Image Size

SqueezeNet 18 5.2 MB 1.24 227 227 ×
GoogleNet 22 27 MB 7.00 224 224 ×

MobileNetv2 53 13 MB 3.50 224 224 ×
ResNet18 18 44 MB 11.70 224 224 ×
ResNet50 50 96 MB 25.60 224 224 ×
ShuffleNet 50 5.4 MB 1.40 224 224 ×

EfficientNetb0 82 20 MB 5.30 224 224 ×

317

318
319 Figure 15: Aaccuracy vs. iteration and Loss vs. iteration curves for the training and validation 

320 of GoogleNet. 

321 We ran our deep learning experiments using the deep learning toolbox of MATLAB 

322 2021a in an Intel(R) Core(TM) i7-7700HQ CPU 2.81 GHz with 32 GB of RAM, and Nvidia 

323 GTX 1070 GPU with 8 GB VRAM. We employed stochastic gradient descent (SGD) with a 

324 learning rate of 0.001 to finetune the pretrained CNNs. In Table 5, we show a summary of the 

325 properties of CNNs we used in our study.

326 5. Comparison of Time Complexity

327 The run-time of the methods that improve the quality of noisy X-ray images is of great 

328 important [38], especially for the point-of-care machines in the clinical environment. Typically, 

329 X-ray images corrupted by the impulse noise are enhanced in two phases [22, 39, 40]. In the 

330 first phase, noise-free or noisy pixels are identified. Then in the final phase, enhancement of 

331 the quality of X-ray images is done. Following the same workflow, we do noise detection by 
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332 generating the noise-map of an X-ray image by using a switching technique-based fuzzified 

333 degree in the first phase of our proposed method. Afterwards, as a manifestation of the second 

334 phase, we design our CNN such that it becomes robust to noise and does not require any 

335 preprocessing of an X-ray image in terms of noise reduction.

336 Recent works [41-44] suggested that the median filtering is one of the fastest method of 

337 removing the impulse noise. However, the time complexity of computing the median filter 

338 kernel by quick sort algorithm is O( ). In contrast, the proposed model does not require to sort 𝑛 𝑙𝑜𝑔(𝑛)
339 the data, rather it uses the switching technique with time complexity of O( ) to identify noisy 𝑛
340 pixels. Thus, the comparison of time complexity between the proposed method and the median 

341 filtering (i.e., one of the fastest method for removal of impulse noise [41-44]) indicates the 

342 superiority of the proposed method.

343 6. Experimental Results

344 In this section, we discuss the performance comparison of the proposed approach with 

345 respect to the state-of-the-arts on the detection of COVID-19 in noisy X-ray images. The 

346 COVID-19 detection accuracy curves during GoogleNet training and validation with the 

347 impulse ( ) noise-corrupted X-ray images are illustrated in Figure 15. We compare the 𝑑=22%
348 classification performance by the proposed method to that of the state-of-the-art methods in 

349 three scenarios: (i) training conventional CNNs using data without augmentation, (ii) training 

350 conventional CNNs with data augmentated by learning-to-augment strategy, and (iii) training 

351 proposed noise-robust CNNs with data augmented by learning-to-augment strategy. Figure 16 

352 illustrates the COVID-19 detection performance for the test X-ray dataset corrupted by impulse 

353 noise with  of  4%, 6%, 8%, and 10% for all three scenarios. It can be seen that the COVID-19 𝑑
354 detection accuracy by the pretrained networks using scenario-iii is the best among all three 

355 scenarios.

356 We also show the COVID-19 detection errors (i.e., CNN classification error) on the 

357 impluse noise-corrupted X-ray testset for  in three scenarios. We see in Table 4 that the 𝑑=1‒10%
358 performance by the ResNet50 in scenario-iii is the best among other error performances. It 

359 reduced the error in scenario-iii compared to scenario-ii by 2% (i.e., 31% to 29%), and 

360 compared to scenario-i by massive 53% (i.e., 82% to 29%) for . Thus, it is clear from Table 4 𝑑=5%
361 that our proposed approach using adaptive resizing, adaptive convolution, and learning-to-

362 augment strategy has great efficacy in accurately classfying noisy image data. Finally, we show 

363 the line charts of COVID-19 detection accuracy using the impulse noise-corrupted X-ray data 
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364 with  for three scenarios. We see in Figure 17 that the scenario-iii showed the best detection 𝑑=1‒10%
365 performance among all three scenarios. Thus, it becomes more evident that the proposed 

366 method can effetively classify noisy images with higher accuracy.
367
368
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(a)                       Deep CNNs
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 (b)                         Deep CNNs
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(c)                            Deep CNNs
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(d)                          Deep CNNs
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369 Figure 16: The accuracy of COVID-19 detection by different methods for noisy X-ray images 

370 corrupted by the impulse noise with (a) , (b) , (c) , and (d) . 𝒅=𝟒% 𝒅=𝟔% 𝒅=𝟖% 𝒅=𝟏𝟎%

371

372 Table 4: COVID-19 detection error (1/100) on X-ray images corrupted by the impulse noise with . Here, 𝒅 =𝟏‒𝟏𝟎%
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373 scenarios: (i) training conventional CNNs using data without augmentation, (ii) training 

374 conventional CNNs with data augmentated by learning-to-augment strategy, and (iii) training 

375 proposed noise-robust CNNs with data augmented by learning-to-augment strategy

Networks Scenario Impulse noise density

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

i 0.79 0.80 0.80 0.81 0.82 0.82 0.82 0.82 0.83 0.83

ii 0.56 0.69 0.71 0.72 0.72 0.74 0.75 0.81 0.82 0.83

SqueezeNet

iii 0.55 0.70 0.70 0.72 0.72 0.74 0.75 0.80 0.82 0.82

i 0.48 0.49 0.49 0.50 0.50 0.52 0.53 0.53 0.58 0.61

ii 0.33 0.39 0.44 0.45 0.48 0.50 0.52 0.53 0.53 0.56

GoogleNet

iii 0.26 0.28 0.28 0.29 0.29 0.30 0.31 0.31 0.32 0.32

i 0.59 0.62 0.67 0.72 0.72 0.73 0.77 0.80 0.80 0.82

ii 0.28 0.34 0.36 0.53 0.58 0.58 0.69 0.69 0.70 0.71

MobileNetv2

iii 0.24 0.24 0.26 0.26 0.26 0.27 0.27 0.28 0.28 0.30

i 0.51 0.70 0.75 0.78 0.78 0.81 0.82 0.82 0.83 0.83

ii 0.26 0.27 0.30 0.38 0.39 0.45 0.45 0.46 0.53 0.57

ResNet18

iii 0.22 0.25 0.25 0.26 0.26 0.27 0.28 0.30 0.30 0.30

ShuffleNet i 0.66 0.76 0.77 0.77 0.77 0.78 0.79 0.80 0.80 0.83

ii 0.35 0.38 0.41 0.47 0.47 0.54 0.54 0.60 0.60 0.60

iii 0.22 0.25 0.26 0.26 0.28 0.28 0.29 0.29 0.32 0.33

i 0.65 0.66 0.71 0.73 0.78 0.79 0.79 0.81 0.82 0.82

ii 0.49 0.49 0.48 0.45 0.45 0.42 0.40 0.31 0.28 0.31

ResNet50

iii 0.21 0.22 0.23 0.23 0.24 0.24 0.25 0.26 0.26 0.29
376

377 7. Conclusion

378 In this report, we propose a novel noise-robust deep CNN framework for improving 

379 detection of COVID-19 in the impulse noise-corrupted X-ray images. Our proposed framework 

380 includes several novel image processing modules. The noise-map layer module can effectively 

381 improve detection in a noisy image by making use of switching technique based on fuzzified 

382 degree. The adaptive resizing layer module can simultaneously remove noisy pixels while 

383 performing interpolation-based image resizing. In addition, the adaptive convolution layer 

384 module incorporates noise-map from the first module into the convolution operation that 

385 effectively shuts off the remaining noisy pixels in the input image. We further incorporated the 

386 learning-to-augment strategy for automatic augmentation of training images, which improved 

387 the generalizability of the deep models on X-ray images. We incorporated our novel modules 

388 into several pretrained state-of-the-art deep CNNs such as SqueezeNet, GoogleNet, 
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389 MobileNetv2, ResNet18, ResNet50, ShuffleNet, and EfficientNetb0. Validation of the 

390 proposed noise-robust model on clinically acquired X-ray images from COVID-19, non-

391 COVID pneumonia and healthy subjects demonstrated better COVID-19 detection 

392 performance on noisy X-ray images compared to the state-of-the-art models. Moreover, the 

393 proposed model requires no preprocessing for impulse noise removal, rather noise removal 

394 happens on-the-fly because of our novel modules, which speeds up the classification of noisy 

395 X-ray. Therefore, our data suggest that the proposed deep CNN framework could be very 

396 effective in classification tasks, even on the noisy data, and could improve the generalization 

397 of deep CNN. In the near future, we aim to examine the ability of our noise-robust CNN to 

398 improve such classification task in the high-density noise-corrupted X-ray images. 

399
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400 Figure 17: Line chart of COVID-19 detection accuracy using the impulse noise-corrupted X-ray 

401 data with . 𝒅= 𝟏‒𝟏𝟎%
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