
Journal Pre-proofs

LAIU-Net: A learning-to-augment incorporated robust U-Net for depressed
humans’ tongue segmentation

Mahmoud Marhamati, Ali Asghar Latifi Zadeh, Masoud Mojdehi Fard,
Mohammad Arafat Hussain, Khalegh Jafarnezhad, Ahad Jafarnezhad, Mehdi
Bakhtoor, Mohammad Momeny

PII: S0141-9382(23)00004-5
DOI: https://doi.org/10.1016/j.displa.2023.102371
Reference: DISPLA 102371

To appear in: Displays

Received Date: 1 July 2022
Revised Date: 18 December 2022
Accepted Date: 5 January 2023

Please cite this article as: M. Marhamati, A. Asghar Latifi Zadeh, M. Mojdehi Fard, M. Arafat Hussain, K.
Jafarnezhad, A. Jafarnezhad, M. Bakhtoor, M. Momeny, LAIU-Net: A learning-to-augment incorporated robust
U-Net for depressed humans’ tongue segmentation, Displays (2023), doi: https://doi.org/10.1016/j.displa.
2023.102371

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.displa.2023.102371
https://doi.org/10.1016/j.displa.2023.102371
https://doi.org/10.1016/j.displa.2023.102371


1

LAIU-Net: A learning-to-augment incorporated robust U-Net for 

depressed humans’ tongue segmentation 

Mahmoud Marhamati1, Ali Asghar Latifi Zadeh2, Masoud Mojdehi Fard3, Mohammad 

Arafat Hussain4, Khalegh Jafarnezhad1, Ahad Jafarnezhad1, Mehdi Bakhtoor5, 

Mohammad Momeny2*

1Esfarayen Faculty of Medical Science, Esfarayen, Iran
2Yazd University, Yazd, Iran

3Psychosomatic research center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
4Boston Children’s Hospital, Boston, MA 02115

5Islamic Azad University, Shirvan, Iran

*Email of Corresponding Author: 

mohamad.momeny@gmail.com (M. Momeny)

LAIU-Net: A learning-to-augment incorporated robust U-Net for 

depressed humans’ tongue segmentation 

Mahmoud Marhamati1, Ali Asghar Latifi Zadeh2, Mohammad Arafat Hussain3, 

Khalegh Jafarnezhad1, Ahad Jafarnezhad1, Masoud Mojdehi Fard1, Mohammad 

Momeny2*

1Esfarayen Faculty of Medical Science, Esfarayen, Iran
2Yazd University, Yazd, Iran

3Boston Children’s Hospital, Boston, MA 02115
4Islamic Azad University, Shirvan, Iran

*Email of Corresponding Author: 

mohamad.momeny@gmail.com (M. Momeny)

mailto:mohamad.momeny@gmail.com
mailto:mohamad.momeny@gmail.com


2

Abstract

Computer-aided tongue diagnosis system requires segmentation of the tongue body. The 

frequent movement of the tongue due to its natural flexibility often causes shape variability in 

photographs across subjects, which makes segmenting the tongue challenging from non-tongue 

elements, such as the lips, teeth, and other objects in the background of the tongue. The 

flexibility of the tongue causes a further challenge in maintaining a similar shape and style 

when taking photos of many healthy subjects and patients. To address these challenges, we 

have built a tongue dataset, where the tongue of each subject has been scanned thrice with an 

interval of less than a second. We have collected 333 tongue images from 111 depressed 

humans, who have been diagnosed with depression by a psychiatrist. In addition, in this paper, 

we propose a learning-to-augment incorporated U-Net (LAIU-Net) for the segmentation of the 

depressed human tongue in photographic images. The best policies for data augmentation were 

automatically chosen with the proposed LAIU-Net. For this purpose, we corrupted 

photographic tongue images with the Gaussian, speckle, and Poisson noise. The proposed 

approach addresses the overfitting problem as well as increases the generalizability of a deep 

network. We have compared the performance of the proposed LAIU-Net with that of other 

state-of-the-art U-Net configurations. Our LAIU-Net approach achieved a mean boundary F1 

score of 93.1%.  

Keywords: Tongue segmentation, learning-to-augment strategy, data augmentation, deep 

learning, U-Net.

1. Introduction

1.1. Tongue Diagnosis

Tongue body segmentation in photographic images is one of the major steps in the computer-

aided complete tongue diagnosis system [1]. Previous studies indicated a link between a human 

tongue and health conditions (e.g., [2]), and diagnosis via examining a tongue has been a 

common practice worldwide due to its non-painful examination feasibility and obstruction-less 

accessibility. Human tongue examination has been considered an essential practice to get an 

insight into the human physiological and pathological conditions in traditional and alternative 

Chinese medicine, as traditional Asian medicines, are often based on holistic concepts [3]. 

However, the level of accuracy in tongue examination-based diagnosis varies depending on the 

experience of clinicians. To improve diagnostic accuracy, clinicians often use other diagnosis 

approaches (e.g., palpation) in addition to tongue observation. Recently, photographic image-

based tongue diagnosis using image processing techniques has been used to address the 
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limitations of the manual tongue-examination approach [4-9]. Chiu proposed a computerized 

tongue examination system (CTES) based on chromatic and textural analysis strategy [10]. 

Zhang et al. proposed a Bayesian network-based computer-aided tongue diagnosis system 

(CATDS) to show the relationship between diseases and tongue-based quantitative attributes 

[11]. 

1.2.  Tongue Segmentation

The tongue apex (i.e., the front part of the tongue) is very flexible and its movements during 

photo shooting cause variability in tongue shapes across subjects. This variability causes 

challenges in segmenting the tongue in the photographic images from non-tongue elements 

(i.e., lips, teeth, soft and hard palates, etc.) [12]. Segmenting the tongue from the background 

is essential for tongue-specific feature extraction in a computer-aided tongue diagnosis system. 

Therefore, the tongue segmentation procedure must be robust across all patients. Typically, 

photographic images of tongues are captured in color and many traditional image processing-

based tongue segmentation approaches used the sequential application of low-level color pixel 

processing. For example, combined region and edge-based [13], combined region and intensity 

thresholding-based [13], bi-elliptical deformable contour-based [12], a combination of polar-

edge detection and active contour-based [14], color active contour-based [15, 16], color 

control-geometric and gradient flow snake-based [17], polar edge detection via snake-based 

[18], combined mean shift algorithm and Canny edge detector-based [19], combined gradient 

flow and region merging-based [20], threshold control function-based [21, 22], double 

geodesic flow-based [23], double geo-vector flow-based [24], combined tongue shape and 

snake correction model-based [25], combined 2D Gabor filter and fast marching-based [26], 

and adaptive active contour-based [27] tongue segmentation approaches have been proposed 

in the literature. However, these conventional model-based approaches have various 

limitations, such as requiring user interaction, sensitivity to parameter settings, etc. [28].

To overcome the limitations of conventional model-based segmentation approaches, 

supervised learning has been extensively used for medical image segmentation in recent years. 

Supervised learning-based tongue body segmentation approaches are also reported using 

support vector machine [29], AdaBoost algorithm [30], cascaded convolutional neural 

networks (CNN) [31], ResNet [32], SegNet [33], fully convolutional network [34, 35], U-Net 

[36-38], iterative transfer learning [39], feature pyramid network [40], and patch-driven sparse 

representation [41]. These supervised learning approaches showed promising tongue 
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segmentation performance by emphasizing producing more accurate segmentation. However, 

mostly ignored improving the model generalizability aspect of deep models [42-50]. 

1.3.  Proposed model

Our proposed study focuses on improving the generalizability of a supervised deep learning 

model for tongue segmentation as well as increasing a deep model’s robustness to noise. Our 

approach optimizes parameters of different types of noises via learning to generate diverse 

augmented data, which in turn improves the generalizability of a deep segmentation model. 

The contributions of this paper are summarized as follows:

1. To our knowledge, we propose the first learning-to-augment strategy- [51, 52] 

incorporated robust and generalized deep neural network (i.e., U-Net) for photographic 

image segmentation. This learning-to-augment strategy follows a computation pipeline, 

which is well optimized and showed great promise in the classification tasks  [51, 52].

2. Our learning-to-augment strategy uses the Bayesian optimizer to choose the best set of 

policies for data augmentation by selecting the optimized Gaussian, speckle, and Poisson 

noise parameters.

3. We show the efficacy of our proposed learning-to-augment strategy-incorporated U-Net 

on the depressed human's tongue segmentation task and demonstrated the best 

performance compared to other segmentation approaches.

4. We build a photographic tongue dataset consisting of 333 human tongue images, captured 

from 111 patients diagnosed with depression. Three images were captured in succession 

from each patient with an interval of less than a second.

2. Materials and Methods

2.1. Depressed Humans’ Tongue Dataset 

We have collected 333 photographs of the 111 depressed humans’ tongues (Aged: 18-60 years, 

Male: 53, and Female: 58; 3 photos from each patient). Apart from the fact that tongue images 

are collected from different patients or healthy subjects, many other factors (e.g., the 

illumination of the photo studio, the color of the food eaten just before the photography, etc.) 

are responsible for causing substantial variability in the tongue photographs. To take the 

advantage of these factors to ensure diversity in our dataset, we avoided direct sunlight and 

took photos of all the patients inside a room using a typical camera flash. We used Canon EOS 

80D Digital Camera with an 18-55mm IS STM lens. We set the image resolution to 

600040003 pixels. Table 1 summarizes the camera specification and imaging settings. 
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Ground truth tongue masks were generated by manual segmentation using the Lasso tools (i.e., 

standard, polygonal, and magnetic) of Photoshop CC 2019 (Adobe Inc., San Jose, CA)

Table 1. The camera specifications and photography settings

Property Value Property Value

Camera maker Canon Dimensions 60004000 pixels

Camera model Canon EOS 80D Horizontal resolution 72 dpi

F-stop f/5 Vertical resolution 72 dpi

Exposure time 1/60 sec. Bit depth 24

ISO speed ISO-200 Resolution unit 2

Exposure bias 0 step Color representation sRGB

Focal length 50mm Exposure program Normal

Metering mode Pattern EXIF version 0230

Flash mode Flash, compulsory White balance Auto

The tongue apex (i.e., the frontal part of a human tongue) is a very flexible and mobile part of 

this organ. The tongue apex is followed by the body of the tongue, which is formed by the 

intrinsic muscles consisting of superior and inferior longitudinal lingual muscles, vertical 

lingual muscles, and transverse lingual muscles. The body of the tongue is followed by the 

tongue muscles (also known as extrinsic muscles) with bony insertions. The extrinsic muscles 

include the genioglossus, the hyoglossus, the styloglossus, and the palatoglossus. The 

contraction of the geniohyoid against the hyoid bone causes the protrusion of the tongue. The 

synergy between the intrinsic and extrinsic muscles causes flexibility and mobility of the 

tongue [53]. We show images of three faces with tongues out of the oral cavity (i.e., out of the 

mouth) in Figure 1. We can see in this figure that there is substantial variability in the shape of 

the tongue among these patients. Due to the extensive flexibility of the tongue, maintaining a 

similar shape of the tongue in photos across patients is difficult. That is why we took three 

photos of the same tongue in succession with an interval of less than a second. Figure 2 

compares our proposed tongue dataset attribute to that of the datasets by Xue et al. [34], Pang 

et al. [54], Zhou et al. [36], and Huang et al. [37]. We see in this figure that, unlike other 

datasets, our dataset contains three successive tongue images per patient that in turn allows 

capturing different shapes of a particular tongue. Photos of the tongue of depressed patients are 

captured in the psychiatrist's office once a subject is diagnosed with depression. A clinical 

ethics board of the Islamic Republic of Iran [55] approved this data collection. We also 

collected informed consent from patients before capturing their tongue photos.
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Figure 1: Example tongue photos in our dataset. 

Huang et al.

Proposed
(a) (b)

Figure 2: Comparison of human tongue imaging. (a) Only a single photo was taken per subject in existing 
tongue datasets. (b) Three tongue photos are captured in succession for each subject in the proposed dataset.

2.2. U-Net
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U-Net [56] is a widely used deep neural network for medical image segmentation, which 

consists of an encoding path, a decoding path, and the feature map concatenation procedure. 

Let   denotes a node in the U-Net architecture, where  represents the depth, and  represents 𝑋𝑖,𝑗 𝑖 𝑗

either encoder (i.e., ) or decoder (i.e., ) side of the U-Net architecture. The encoder 𝑗 = 0 𝑗 = 1

(i.e., ) of the U-Net extracts high-level features from input images by 𝑋𝑖,0; 𝑖 = [0, 1, 2, 3, 4]

using convolution and pooling layers (see Figure 3). On the other hand, the decoding path of 

the U-Net (i.e., ) expands the encoder-learned features sequentially using 𝑋𝑖,1; 𝑖 = [0, 1, 2, 3]

deconvolution and up-pooling layers and finally produces the segmentation mask. In addition, 

the encoding feature maps at  is concatenated to the decoding feature map at  via skip 𝑋𝑖,0 𝑋𝑖,1

connections to recover the spatial information effectively.

X2,1

X1,0

X2,0

X3,0

X4,0

X1,1

X3,1

X0,0 X0,1

Copy and Crop

Input
image tile

Output
segmentation

map

Xi,j

Down-sampling
Up-sampling
Skip connection
Convolution

Figure 3: The U-Net architecture used in this work.

2.3. Learning-to-Augment Strategy

In this paper, we incorporated the learning-to-augment strategy [52, 57] to improve the 

robustness and generalizability of U-Net. The learning-to-augment strategy uses a noisy image 

generator, a controller, an augmenter, and a few child networks. This strategy automatically 

selects optimal parameters for the Gaussian, speckle, and Poisson noise to generate new 

augmented images. The mean ( ) and variance ( ) parameters are used for the Gaussian and 𝜇 𝑣

speckle noise [58-61]. Figure 4 shows a few photographic images corrupted by different noises. 

We see in Figure 5, the noisy image generator module adds noise to the original photographic 

images with given noise parameters. In the first iteration, parameters ( , ) of the Gaussian, 𝜇 𝑣

speckle, and Poisson noise are chosen randomly. From the second iteration onwards, the 

controller module updates these parameters by choosing the optimal policy. Then, the 

augmenter module generates new augmented images by adding noise to the original images. 

Afterward, child networks are trained using newly generated augmented images to assess the 
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network performance on a given task. A child network is a U-Net-based model trained with an 

augmentation policy. Finally, the controller (a Bayesian optimizer [62, 63]) replaces weak 

policies (i.e., noise parameters) with a newer set of stronger augmentation policies by searching 

the parameter search space. Figure 6  shows how a child network is trained with the new data 

generated by an augmentation policy.

Original Image Image Corrupted by the 
Gaussian Noise

Image Corrupted by the 
Speckle Noise

Image Corrupted by the 
Poison Noise

Pa
tie

nt
 IV

Pa
tie

nt
 V

(a) (b) (c) (d)

Figure 4. Noisy photographic images corrupted by the Gaussian, speckle, and Poisson noises. (a) 
Original images, (b)-(d) images corrupted by the Gaussian ( , ), speckle ( ), 𝝁 = 𝟎 𝒗 = 𝟎.𝟎𝟎𝟑 𝒗 = 𝟎.𝟎𝟏

and Poisson noises  respectively.,
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The noisy image generators

Dataset

Randomly split raw samples of dataset to 3-fold

Fold (1) Fold (2) Fold (3)

Add Poisson noise
to fold (3)

The augmenters

The controllers (Bayesian optimizers)

Select top politics

New image samples

Child network (1) Child network (2) Child network (3)

Evaluator (1) Evaluator (2) Evaluator (3)

Policy (1) Policy (2) Policy (3)

Repeat
until maximum 

iteration number is 
reached 

Give the parameters of each noise type

Gaussian noise 
parameters

Speckle noise
parameters

Poisson noise 
parameters

Set the parameters of 
each noise type using the 

controller

Add speckle noise
to fold (2)

Add Gaussian 
noise to fold (1)

Figure 5. Flowchart showing our learning-to-augment strategy [51, 52].
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(a) (b) (c)
Figure 6: The U-Net-based child network is trained with the new data generated by an augmentation policy. (a) 
Generation of noisy images by corrupting original images, (b) a child network to be trained on the new data, and 
(c) the controller finds the optimal noise parameters.
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2.4. Proposed LAIU-Net

The proposed LAIU-Net combines the learning-to-augment strategy and the U-Net with a 

depth of 5 encoder stages (i.e., ) and 4 decoder stages (i.e., 𝑋𝑖,0; 𝑖 = [0, 1, 2, 3, 4] 𝑋𝑖,1

) (see Figure 7). As shown in Figure 7 and Table 2, the U-Net architecture of ; 𝑖 = [0, 1, 2, 3]

the proposed LAIU-Net contains 18 convolution layers, 4 transposed convolution, 22 leaky 

rectified linear unit (ReLU) activation layers, 4 pooling layers, 4 layers of batch normalization, 

and a Dropout layer. We incorporated the leaky ReLU to improve the performance of the 

proposed LAIU-Net optimization and segmentation [64]. We also incorporated a Dropout layer 

in the proposed LAIU-Net to avoid the overfitting problem. The dropout layer randomly drops 

 neurons while keeping  neurons active in a particular layer. Finally, we used (1 ― 𝑝)% 𝑝%

batch normalization and some conventional data augmentation methods for stable training of 

LAIU-Net. Although batch normalization optimizes network training, training may get slower 

because of the extra calculations of batch normalization during the forward pass. To reduce the 

computational overhead, we used 4 batch normalization layers at the end of encoder blocks at 

four different depths (see Figure 7).

3. Validation

3.1. Statistical Metrics

To evaluate the performance of the proposed LAIU-Net and state-of-the-art U-Net with 

different configurations on the tongue image segmentation, we use two quantitative metrics 

such as the intersection over union (IoU), and mean boundary F1 Score (BF Score) defined as:

                            IoU =
TP

TP + FN + FP

(2)

                                  (3)Precision =
TP

TP + FP

                                    (4)Recall =
TP

TP + FN

(5)BF Score =
2 × Precision × Reall

Precision + Reall
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Figure 7: The architecture of the improved U-Net used in the proposed LAIU-Net
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Table 2: Comparison of configurations of the improved U-Net (part of LAIU-Net) and 5 other U-Net 
architectures. Acronyms- Config: Configuration

# Layers Config. I Config. II Config. III Config. IV Config. V LAIU-Net Description

1
Image 
Input

Original 
Data

Original 
Data

Original 
Data

Original 
Data

Conventional Data 
Augmentation

Learning-to-
Augment

256×256×3 images with 
'zerocenter' normalization

2
Encoder-
Stage-1

Conv. Conv. Conv. Conv. Conv. Conv.
64 3×3 convolutions 
stride [1 1] and padding 'same'

3
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

4
Encoder-
Stage-1

Conv. Conv. Conv. Conv. Conv. Conv.
64 3×3 convolutions 
stride [1 1] and padding 'same'

5
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

6 BN - - BN BN BN BN Batch normalization

7
Encoder-
Stage-1

Pooling Pooling Pooling Pooling Pooling Pooling
2×2 max pooling 
stride [2 2] and padding [0 0 0 0]

8
Encoder-
Stage-2

Conv. Conv. Conv. Conv. Conv. Conv.
128 3×3 convolutions 
stride [1 1] and padding 'same'

9
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

10
Encoder-
Stage-2

Conv. Conv. Conv. Conv. Conv. Conv.
128 3×3 convolutions 
stride [1 1] and padding 'same'

11
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

12 BN - - BN BN BN BN Batch normalization

13
Encoder-
Stage-2

Pooling Pooling Pooling Pooling Pooling Pooling
2×2 max pooling 
stride [2 2] and padding [0 0 0 0]

14
Encoder-
Stage-3

Conv. Conv. Conv. Conv. Conv. Conv.
256 3×3 convolutions 
stride [1 1] and padding 'same'

15
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

16
Encoder-
Stage-3

Conv. Conv. Conv. Conv. Conv. Conv.
256 3×3 convolutions 
stride [1 1] and padding 'same'

17
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

18 BN - - BN BN BN BN Batch normalization

19
Encoder-
Stage-3

Pooling Pooling Pooling Pooling Pooling Pooling
2×2 max pooling 
stride [2 2] and padding [0 0 0 0]

20
Encoder-
Stage-4

Conv. Conv. Conv. Conv. Conv. Conv.
512 3×3 convolutions 
stride [1 1] and padding 'same'

21
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

22
Encoder-
Stage-4

Conv. Conv. Conv. Conv. Conv. Conv.
512 3×3 convolutions 
stride [1 1] and padding 'same'

23
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

24 BN - - BN BN BN BN Batch normalization

25
Encoder-
Stage-4

Dropout Dropout Dropout Dropout Dropout Dropout 50% dropout

26
Encoder-
Stage-4

Pooling Pooling Pooling Pooling Pooling Pooling
2×2 max pooling 
stride [2 2] and padding [0 0 0 0]

27 Bridge Conv. Conv. Conv. Conv. Conv. Conv.
1024 3×3 convolutions 
stride [1 1] and padding 'same'

28
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

29 Bridge Conv. Conv. Conv. Conv. Conv. Conv.
1024 3×3 convolutions 
stride [1 1] and padding 'same'

30
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

31 Bridge Dropout Dropout Dropout Dropout Dropout Dropout 50% dropout

32
Decoder-
Stage-1

Transposed 
Conv.

Transposed 
Conv.

Transposed 
Conv.

Transposed 
Conv. Transposed Conv.

Transposed 
Conv.

512 2×2 transposed convolutions 
stride [2 2] and cropping [0 0 0 0]
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33
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

34
Decoder-
Stage-1

Depth 
Concat.

Depth 
Concat.

Depth 
Concat.

Depth 
Concat. Depth Concat. Depth Concat. Depth concatenation of 2 inputs

35
Decoder-
Stage-1

Conv. Conv. Conv. Conv. Conv. Conv.
512 3×3 convolutions 
stride [1 1] and padding 'same'

36
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

37
Decoder-
Stage-1

Conv. Conv. Conv. Conv. Conv. Conv.
512 3×3 convolutions 
stride [1 1] and padding 'same'

38
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

39
Decoder-
Stage-2

Transposed 
Conv.

Transposed 
Conv.

Transposed 
Conv.

Transposed 
Conv. Transposed Conv.

Transposed 
Conv.

256 2×2 transposed convolutions 
stride [2 2] and cropping [0 0 0 0]

40
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

41
Decoder-
Stage-2

Depth 
Concat.

Depth 
Concat.

Depth 
Concat.

Depth 
Concat. Depth Concat. Depth Concat. Depth concatenation of 2 inputs

42
Decoder-
Stage-2

Conv. Conv. Conv. Conv. Conv. Conv.
256 3×3 convolutions 
stride [1 1] and padding 'same'

43
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

44
Decoder-
Stage-2

Conv. Conv. Conv. Conv. Conv. Conv.
256 3×3 convolutions 
stride [1 1] and padding 'same'

45
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

46
Decoder-
Stage-3

Transposed 
Conv. 

Transposed 
Conv. 

Transposed 
Conv. 

Transposed 
Conv. Transposed Conv. 

Transposed 
Conv. 

128 2×2 transposed convolutions 
stride [2 2] and cropping [0 0 0 0]

47
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

48
Decoder-
Stage-3

Depth 
Concat.

Depth 
Concat.

Depth 
Concat.

Depth 
Concat. Depth Concat. Depth Concat. Depth concatenation of 2 inputs

49
Decoder-
Stage-3

Conv. Conv. Conv. Conv. Conv. Conv.
128 3×3 convolutions 
stride [1 1] and padding 'same'

50
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

51
Decoder-
Stage-3

Conv. Conv. Conv. Conv. Conv. Conv.
128 3×3 convolutions 
stride [1 1] and padding 'same'

52
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

53
Decoder-
Stage-4

Transposed 
Conv. 

Transposed 
Conv. 

Transposed 
Conv. 

Transposed 
Conv. Transposed Conv. 

Transposed 
Conv. 

64 2×2 transposed convolutions 
stride [2 2] and cropping [0 0 0 0]

54
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

55
Decoder-
Stage-4

Depth 
Concat.

Depth 
Concat.

Depth 
Concat.

Depth 
Concat. Depth Concat. Depth Concat. Depth concatenation of 2 inputs

56
Decoder-
Stage-4

Conv. Conv. Conv. Conv. Conv. Conv.
64 3×3 convolutions 
stride [1 1] and padding 'same'

57
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

58
Decoder-
Stage-4

Conv. Conv. Conv. Conv. Conv. Conv.
64 3×3 convolutions 
stride [1 1] and padding 'same'

59
Activation 
Fun.

ReLU ReLU ReLU Leaky ReLULeaky ReLU Leaky ReLU Leaky ReLU with scale 0.01

60 Final-Conv.Conv. Conv. Conv. Conv. Conv. Conv.
2 1×1 convolutions 
stride [1 1] and padding 'same'

61
Activation 
Fun.

Sigmoid Softmax Softmax Softmax Softmax Softmax  Softmax

62 Dice Dice Pixel Classification Layer Dice Pixel Classification Layer

3.2. Implementation

We use the deep network designer of MATLAB 2021b (MathWorks Inc., Natick, MA) to train, 

validate, and test our proposed LAIU-Net in an Intel(R) Core(TM) i7-7700HQ CPU 2.81 GHz 
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with 32 GB of RAM and 8 GB of VRAM. We resized our original image of size 6000 4000×

3 pixels to 256 256 3 pixels before feeding it to our deep model. Then we employed × × ×

“imresize” function of MATLAB (it uses bicubic interpolation) to resize our original image to 

256×256×3 pixels before feeding it to our deep model. We used the stochastic gradient descent 

with momentum (SGDM) as an optimizer with a maximum epoch of 5, minimum batch size of 

5, a momentum of 0.9, an initial learning rate of 0.001, and dropout . We used 𝑝 = 0.5

approximately 80% of the photographic tongue data for training and validation and 

approximately 20% (68 images) of the data for testing. We made sure that images from a 

particular patient is not split between the training, validation, and test sets. We also show curves 

for train and validation accuracy vs. iteration for the network training duration for the task of 

tongue image segmentation in Figure 8. 

4. Results and Discussion

We provide a comparative tongue image segmentation performance of our LAIU-Net and 5 

different configurations of U-Net architectures. We can see in Table 2 that configuration I uses 

sigmoid activation. On the other hand, configuration II uses SoftMax activation. In 

configuration III, 4 batch normalization layers have been added to the U-Net. In configuration 

IV, leaky ReLU is used instead of ReLU. As conventional data augmentation methods, we 

performed a rotation of 90° and a vertical flip of images in configuration V. The proposed 

LAIU-Net incorporates a learning-to-augment strategy in addition to the mentioned data 

augmentation. The proposed LAIU-Net uses the best set of parameters for the Gaussian, 

speckle, and Poisson noises to be applied to original photographic tongue images for data 

augmentation. These best sets of noise parameters are chosen as the best policy by the learning-

to-augment strategy. 

Figure 8. Accuracy curves of the LAIU-Net training and validation for the tongue image segmentation.

4.1. Quantitative Performance Comparison 
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At first, we show the confusion matrices of the tongue image segmentation mask by the 

proposed LAIU-Net and other U-Net configurations in Figure 9. In the matrix cells, we show 

the number of pixels count that fall inside either predicted tongue or background classes. We 

see in Figure 9 that the number of pixels representing the tongue body is much less than that 

of the background. So, there is a class imbalance in the dataset, and therefore, IoU and BF 

Score are the most suitable metrics to evaluate the performance of this study. We also plot the 

mean IoU and mean BF Score of the segmented tongue by different methods in Figure 10. 

Here, we see that the mean IoU (91.5%) and mean BF Score (93.1%) by the proposed LAIU-

Net are the best compared to that by other techniques. 

Predicted

 Tongue Background

Tongue 56149 14321 79.68%

Background 19511 4366467 99.56%A
ct

ua
l

74.21% 99.67%  

U-Net with Configuration I

Predicted

 Tongue Background

Tongue 59011 11459 83.74%

Background 21671 4364307 99.51%A
ct

ua
l

73.14% 99.74%

U-Net with Configuration II

Predicted

 Tongue Background

Tongue 56256 14214 79.83%

Background 10481 4375497 99.76%A
ct

ua
l

84.30% 99.68%

U-Net with Configuration III

Predicted

 Tongue Background

Tongue 56639 13831 80.37%

Background 10004 4375974 99.77%A
ct

ua
l

84.99% 99.68%

U-Net with Configuration IV

Predicted

 Tongue Background

Tongue 61116 9354 86.73%

Background 9260 4376718 99.79%A
ct

ua
l

86.84% 99.79%

U-Net with Configuration V

Predicted

 Tongue Background

Tongue 65476 4994 92.91%

Background 8059 4377919 99.82%A
ct

ua
l

89.04% 99.89%

The proposed LAIU-Net

Figure 9. Confusion matrices showing the tongue image segmentation performance by different 
methods. 
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Figure 10. Tongue semantic segmentation performance by different methods. Acronym- 
Config: Configuration. 

We show the semantic segmentation performance of different methods for two positive classes 

(i.e., tongue and background) in terms of IoU and mean BF Score in Table 3. At first, we 

considered “tongue” as the positive class and “background” as the negative class. We see in 

Table 3 that the proposed LAIU-Net performed the best in tongue segmentation in terms of 

IoU (83.38%) and mean BF Score (87.80%) compared to other configurations of U-Net. The 

closest performance is shown by the U-Net with configuration IV. Similarly, when 

“background” is considered as the positive class, the proposed LAIU-Net showed the best 

performance in terms of IoU (99.70%) and mean BF Score (98.37%). 

      Table 3. Evaluating the performance of segmentation with deferent positive classes 

Method Positive class IoU (%) Mean BF Score (%)
Tongue 0.6240 0.5727U-Net with Configuration I
Background 0.9923 0.9262

Tongue 0.6404 0.5936U-Net with Configuration II
Background 0.9925 0.9176

Tongue 0.6949 0.6911U-Net with Configuration III
Background 0.9944 0.9526

Tongue 0.7038 0.7009U-Net with Configuration IV
Background 0.9946 0.9529

Tongue 0.7665 0.8056U-Net with Configuration V
Background 0.9958 0.9701

Tongue 0.8338 0.8780Proposed LAIU-Net
Background 0.9970 0.9837
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In Figure 11,  we show mean IoU by different methods on male (26 images) and female (42 

images) patients separately to see the effect of gender on the semantic segmentation 

performance. As we see in Figure 11 that there is no significant difference in segmentation 

performance on the basis of gender.
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Figure 11. The semantic segmentation performance of different methods separately on male (26 
images) and female (42 images) in terms of mean IoU.

4.2. Qualitative Performance Comparison 

Finally, we show the qualitative tongue segmentation performance by the proposed LAIU-Net 

and other U-Net-based techniques in 

Figure 12. We see in this figure that the tongue masks produced by the proposed LAIU-Net are 

the best compared to that by other U-Net configurations. 

5. Conclusion

In this paper, we proposed the first learning-to-augment strategy-incorporated robust and 

generalized U-Net architecture for photographic tongue image segmentation. We produced 

training optimal augmented images via a learning-to-augment strategy that uses the Bayesian 

optimizer to choose the best set of policies for data augmentation via selecting the optimized 

Gaussian, speckle, and Poisson noise parameters. We showed the efficacy of our proposed 

learning-to-augment strategy-incorporated U-Net on the depressed human's tongue 

segmentation task and demonstrated the best performance in terms of IoU and mean BF Score 

compared to other U-Net configurations. In addition, we built a photographic tongue dataset 

consisting of 333 human tongue images of 111 patients diagnosed with depression. Despite 
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promising results, our study has several limitations. For example, our dataset is small which 

hinders us to study the effect of sex on tongue segmentation performance.  In addition, the age 

distribution of our patients is not uniform which further hinders us to study the effect of age on 

tongue segmentation performance. Therefore, in the future, we aim to extend this work with 

additional experiments after collecting more tongue images from depressed as well as healthy 

human subjects. 
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Figure 12. Semantic tongue segmentation performance by different methods.
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Highlights

1. We proposed the first learning-to-augment strategy-incorporated robust and 
generalized U-Net architecture for photographic tongue image segmentation.

2. We produced training optimal augmented images via selecting the optimized 
Gaussian, speckle, and Poisson noise parameters.

3. We showed the efficacy of our proposed learning-to-augment strategy-incorporated 
U-Net on the depressed human's tongue segmentation task. 
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