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Abstract

Fuhrman cancer grading and tumor-node-metastasis (TNM) cancer staging
systems are typically used by clinicians in the treatment planning of renal cell
carcinoma (RCC), a common cancer in men and women worldwide. Pathol-
ogists typically use percutaneous renal biopsy for RCC grading, while stag-
ing is performed by volumetric medical image analysis before renal surgery.
Recent studies suggest that clinicians can effectively perform these classifi-
cation tasks non-invasively by analysing image texture features of RCC from
computed tomography (CT) data. However, image feature identification for
RCC grading and staging often relies on laborious manual processes, which
is error prone and time-intensive. To address this challenge, this paper pro-
poses a learnable image histogram in the deep neural network framework
that can learn task-specific image histograms with variable bin centers and
widths. The proposed approach enables learning statistical context features
from raw medical data, which cannot be performed by a conventional con-
volutional neural network (CNN). The linear basis function of our learnable
image histogram is piece-wise differentiable, enabling back-propagating er-
rors to update the variable bin centers and widths during training. This
novel approach can segregate the CT textures of an RCC in different inten-
sity spectra, which enables efficient Fuhrman low (I/II) and high (III/IV)
grading as well as RCC low (I/II) and high (III/IV) staging. The proposed
method is validated on a clinical CT dataset of 159 patients from The Can-
cer Imaging Archive (TCIA) database, and it demonstrates 80% and 83%
accuracy in RCC grading and staging, respectively.
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1. Introduction

Renal cell carcinoma (RCC) is the seventh most common in men and
tenth most common in women, accounting for an estimated 140,000 global
deaths annually (Ding et al., 2018). The biological aggressiveness of RCC
affects the prognosis and treatment planning (Ishigami et al., 2014). The nat-
ural growth pattern varies across RCC, which has led to the development of
different prognostic models to assess patient-wise risk (Escudier et al., 2016).
The ‘grade’ and ‘stage’ of an RCC are the critical prognostic predictors of
cancer-specific survival (Janssen et al., 2018), where higher-grade and higher-
stage tumors have an elevated risk of postoperative recurrence (van der Mijn
et al., 2019). Typically, radiologists rely on the expertise of pathologists, who
use the 4-tiered Fuhrman grading system (FGS) (Fuhrman et al., 1982) for
RCC grading by examining the histopathologic images of RCC samples. Al-
though the International Society of Urological Pathology (ISUP) introduced
a new grading system for clear cell and papillary RCCs, which is also incor-
porated in the World Health Organization (WHO) renal tumor classification
system (Delahunt et al., 2013), Fuhrman grading is still widely used for RCC
grading in the clinical treatment planning.

Anatomical Stages T Stages N Stages M Stages

Stage I T1 (Tumor ≤7 cm) N0 M0

Stage II T2 (Tumor >7 cm but limited to kidney) N0 M0

Stage III T1-2, T3 (Tumour extends up to Gerota’s fascia) N1, Any M0

Stage IV T4, Any (Tumour invades beyond Gerota’s fascia) Any M0-1

Table 1: The American Joint Committee on Cancer (AJCC) and the Union
for International Cancer Control (UICC) specified criteria for RCC staging.

In contrast, radiologists perform RCC staging by examining the physi-
cal extent, characteristics, and aggressiveness of a tumor in the volumetric
medical image. The American Joint Committee on Cancer (AJCC) and
the Union for International Cancer Control (UICC) specified the criteria for
tumor-node-metastasis (TNM) staging of each cancer as shown in Table 1.
Tumor stage depends on the primary tumor size (T0-4), number and loca-
tion of lymph node involvement (N1-2), and metastatic nature, i.e., tumor
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spreading to other organs (M0-1) (Escudier et al., 2016; AAlAbdulsalam
et al., 2018). Clinical guidelines require clinicians to assign TNM stages
before initiating any treatment (AAlAbdulsalam et al., 2018).

1.1. RCC Grading

Accurate grading of RCC is essential in treatment planning as cancer-
specific survival (CSS) correlates with grades. Kuthi et al. (2017) reported
that the rate of 5-year CSS for Fuhrman grade I and II of RCC is signifi-
cantly higher than that of RCC grade III and IV. Besides, low-grade RCCs
are managed with minimally invasive techniques, while high-grade RCCs are
treated with radical operation (Lin et al., 2019). Conventionally, pathologists
use the 4-tiered FGS (Fuhrman et al., 1982) for RCC grading. However, to
reduce the variability and improve the reproducibility of the tumor grade, a
simplified 2-tiered FGS is preferred by pathologists in current clinical prac-
tice (Ding et al., 2018; Shu et al., 2018; Ishigami et al., 2014). The 2-tier FGS,
which divides grades to low grade (Fuhrman I/II) and high grade (Fuhrman
III/IV), is shown to be as effective as 4-tiered FGS in predicting cancer-
specific mortality in a study population of 2,415 clear cell RCC (ccRCC)
patients (Becker et al., 2016). Nevertheless, recent studies (Ding et al., 2018;
Jeon et al., 2016) reported that the inter-observer reproducibility of grades
assigned by pathologists ranges from 31.3% to 97%. In addition, renal biopsy
often causes complications, such as hemorrhage and infection (Lin et al.,
2019). This scenario motivates the development of a medical image-based
automatic, noninvasive, and reproducible system of RCC grading. Several
machine learning approaches (Tian et al., 2019; Chen et al., 2020) have been
proposed for Fuhrman grading using histopathological images. A few pre-
dictive models for FGS have also been proposed (Lane et al., 2007; Jeldres
et al., 2009) using clinical variables such as patient age, gender, symptoms
and tumor size; however, they showed an accuracy close to that of flipping a
coin (∼50%) (Ding et al., 2018).

Recently, Oh et al. (2017) assessed the correlation between computed to-
mography (CT) features and Fuhrman grade of ccRCC, where ccRCCs were
retrospectively reviewed in consensus by two radiologists. Using logistic re-
gression (LR), they showed a threshold tumor size of 36 mm to predict (AUC:
70%) the high Fuhrman grade. Sasaguri and Takahashi (2018) suggested that
RCCs can be characterized and graded based on CT textural features. Deng
et al. (2019) argued that CT-based filtration-histogram parameters are corre-
lated to biological RCC characteristics like glucose metabolism, hypoxia, and
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tumor angiogenesis. Ding et al. (2018) employed LR on both non-textural
features like the pseudo capsule, round mass, as well as textural ones like
histogram, gray-level co-occurrence matrices (GLCM), gray level run length
matrix (GLRLM), and reported that textural features better discriminated
high from low-grade ccRCC. Shu et al. (2018) also employed LR on CT textu-
ral features, e.g., GLCM, GLRLM, gray level size zone matrix (GLSZM), and
achieved an FGS accuracy of 77%. In a subsequent study, Shu et al. (2019)
used the similar textural features in k-nearest neighbor (KNN), LR, multi-
layer perceptron (MLP), random forest (RF), and support vector machine
(SVM) to classify ccRCCs in low (WHO/ISUP I-II) and high (WHO/ISUP
III-IV) grades. Huhdanpaa et al. (2015) used histogram analysis of the peak
tumor enhancement, tumor heterogeneity, and percent contrast washout in
CT. They reported these parameters to be statistically different between
low and high-grade ccRCC. In recent years, several studies (Yu et al., 2017;
Bektas et al., 2019; Feng et al., 2019; Lin et al., 2019; Sun et al., 2019;
Haji-Momenian et al., 2020; Yan et al., 2020; Nazari et al., 2020) used tex-
tural features in terms of histogram, gradient, run-length matrix and co-
occurrence matrix in different conventional machine learning methods like
SVM, MLP, naive Bayes, KNN, RF, etc. for RCC Fuhrman grading, and
showed AUC in the range of 0.73∼0.87. A few artificial neural network-
based approaches (Kocak et al., 2019; He et al., 2020) have also been pro-
posed for Fuhrman low and high, and ISUP low and high grading of RCC.
These methods also use hand-engineered textural features. These histogram,
GLCM, GLRLM, GLSZM, and other tumor intensity-based features (e.g.,
peak tumor enhancement, tumor heterogeneity, etc.) are known as statisti-
cal context features (Wang et al., 2016) and are found to be very useful for
RCC grade classification.

1.2. RCC Staging

Similar to RCC grade, information on RCC stages significantly helps
clinicians in treatment planning and outcome prediction. Studies (Bradley
et al., 2015; Janssen et al., 2018) suggested that nephron-sparing surgery
in patients having lower-stage tumors significantly improves cancer-specific
survival. In contrast, complete removal of a kidney with/without removing
the adrenal gland and neighboring lymph nodes in patients having higher-
stage tumors improves the survival time. Typically, clinicians perform kidney
tumor staging based on the tumor size and its extent. However, Bradley
et al. (2015) argued that the correlation trend between tumor size and stage
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often deviates for higher tumor stages, and thus, suggested using CT image
features to improve tumor staging.

TNM staging of RCC is currently a manual process, which radiologists
perform twice for the same patient in the clinical workflow (Escudier et al.,
2016). The first evaluation of the tumor stage in the workflow is called
‘clinical’ staging, which radiologists perform before treatment via physical
examination and CT image measurements of a tumor. Clinicians designate
the determined TNM stages with the prefix ‘c’ (i.e., cT and cM). The final
evaluation of the tumor stage is called ‘pathological’ staging and is based on
the resected tumor pathology results either during or after surgery (AAlAb-
dulsalam et al., 2018). Pathologists designate this estimated stage with the
prefix ‘p’ (i.e., pT and pM). Clinical staging (i.e., cT, cM) of RCC is pri-
marily used for treatment management decisions (Bradley et al., 2015). For
example, partial nephrectomy (PN), also known as nephron-sparing surgery,
is typically preferred for cT1 and cT2 tumors (Escudier et al., 2016). After
studying 7,138 patients with pT1 kidney cancer, Tan et al. (2012) suggested
that treatment with PN was associated with improved survival. In a simi-
lar study on pT2 tumor patients, Janssen et al. (2018) showed that patients
having PN had a significantly longer overall survival. Radical nephrectomy
(RN), which refers to complete removal of a kidney with/without removing
the adrenal gland and neighboring lymph node, is generally reserved for cT3
and cT4 tumors (Bradley et al., 2015).

The presurgery clinical tumor staging often suffers from miss-classification
errors. For example, in a recent study, Bradley et al. (2015) reported 23
disagreement cases between cT and pT stages of 90 patients. The study
further indicated that five patients were miss-classified with cT3 but later
downstaged to pT2, while six patients were miss-classified with cT2 but later
upstaged to pT3 for the same patient cohort (∼12%). In another study on
1,250 patients who underwent nephrectomy, Shah et al. (2017) reported 11%
(140 patients) upstaging of tumors from cT1 to pT3. Besides, there was
tumor recurrence in 44 patients (31.4% of the pT3 promoted cases), where
most of these patients initially had PN. These alarming findings suggest that
PN is associated with better survival in low stage tumors (T1 and T2), while
RN is associated with reduced recurrence in high stage (T3 and T4) tumors.
However, high stage tumors (T3-4) are often miss-classified as the low stage
(T1-2) in the clinical staging phase. Additionally, we see in rows 1-3 of
Table 1 that the tumor classifying criterion is not well defined for stages T1,
T2, and T3. Therefore, radiologists often use the TNM description to assign
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an overall ‘Anatomical stage’ from 1 to 4 using the Roman numerals I, II,
III, and IV (Escudier et al., 2016), see Table 1.

For accurate staging of RCC before treatment planning, contrast-enhanced
abdominal CT is considered essential (Escudier et al., 2016). Typically, clin-
icians recognize the tumor size for tumor staging. Although several machine
learning approaches (Coy et al., 2019; Schieda et al., 2020; Yap et al., 2020)
have been proposed for classifying solid renal mass between benign and ma-
lignant cases, by studying the pT stages of 94 kidney samples, Bradley et al.
(2015) argued that the correlation trend between the tumor size and stage
often deviates for stages beyond T3. Thus, they suggested using CT image-
based textural features to improve tumor staging, like in the FGS system.
Recently, Ökmen et al. (2019) used CT textural features in KNN for TNM
staging of RCC.

1.3. Learning Textural Features

Despite the importance of textural features for image classification tasks,
identifying such features from images relies on human visual inspection,
which is difficult, time-consuming, and suffers from a lack of quantification.
To overcome the limitations of manual feature engineering, supervised deep
learning using convolutional neural networks (CNN) has exploded in popu-
larity. In a classical CNN, the first layer’s learned features typically capture
low-level features such as edges. The second layer detects motifs by spotting
particular arrangements of edges. The third layer assembles motifs into larger
combinations representing parts of objects, and subsequent layers detect ob-
jects as combinations of these parts (LeCun et al., 2015). These features
are nonstatistical context features (Wang et al., 2016) and the classical CNN
tends to put less emphasis on the diffused statistical textural features that
are often important, especially for medical imaging applications like tumor
analysis. In an attempt to learn statistical textural features via CNNs in
computer vision tasks, Andrearczyk and Whelan (2016) proposed deploying
a global average pooling over each feature map of the last convolution layer
of a conventional CNN to make the model object shape unaware. However,
the pooling still operates on the learned object-edge/motifs that do not cap-
ture complex and subtle textural variations in the input image. In a recent
study, Wang et al. (2016) proposed an approach to learn histograms that
back-propagates errors to learn optimal bin centers and widths during train-
ing. Wang’s approach has 2 stages: in stage-1, a conventional CNN learns
the appearance feature maps followed by producing a class likelihood (for
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classification) or likelihood map (for segmentation). A learnable histogram
is subsequently trained on the stage-1 likelihood estimates, and the resultant
features of this histogram are concatenated with the appearance features
learned in stage-1. The combined appearance plus histogram features are
then used to produce a fine-tuned stage-2 likelihood-map/class-likelihood,
which results in a slightly better (1.9%) prediction accuracy. We emphasize
that this method does not directly learn histogram features from the image,
instead works on the CNN-produced appearance features.

Learning statistical textural features directly from images using CNN
is vital for medical imaging applications, e.g., tumor characterization and
analysis. It is also evident from earlier works (Ding et al., 2018; Shu et al.,
2018; Huhdanpaa et al., 2015) that CT intensity-based statistical features
can be used for RCC grading, and suggested being used for improved RCC
staging (Bradley et al., 2015). Therefore, it is necessary to develop a deep
neural network (DNN)-based texture learning approach for automatic tumor
characterization.

1.4. Contribution

We propose ImHistNet, a DNN for an end-to-end texture-based image
classification approach. The preliminary version of this work appeared in Hus-
sain et al. (2019a,b). ImHistNet has the following contributions:

1. Learnable Image Histogram (LIH): We propose an LIH layer within
a DNN framework, capable of learning complex and subtle task-specific
textural features from raw images. Different from the work of Wang
et al. (2016), our ImHistNet learns the global statistical features di-
rectly from the image intensity.

2. No Tumor Segmentation: We remove the requirement for the fine
pre-segmentation of the RCC. The proposed learnable image histogram
can stratify tumor and background textures well, thus enabling the
model to focus specifically on the tumor texture.

3. RCC Grading: We demonstrate ImHistNet’s capabilities by perform-
ing automatic RCC grade classification for the 2-tiered FGS on an ex-
tended clinical dataset from real patients.

4. RCC Staging: We also demonstrate ImHistNet’s capability in the
automatic categorization of RCC into anatomical stage low (I/II) and
high (III/IV) on an extended clinical dataset from real patients; the
proposed method is the first and only work that performs CT-based
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RCC staging using deep learning. It is an important finding of our
experiments that we observe a correlation between the RCC stages
and the deep-learned CT textural features, which to our knowledge,
no one thoroughly investigated to date. As TNM staging criteria have
overlaps among the classes, we aim to perform automatic anatomical
staging instead of TNM staging (see Table 1).

In this paper, we present additional experimental findings, results, and
discussions over our previous work (Hussain et al., 2019a,b) as follows:

1. Intensity Stratification by LIH: We demonstrate our new experi-
mental findings on how the learnable bins stratify the CT intensities
to facilitate task-specific textural feature learning.

2. Ability of LIH to Pick Task-specific Intensity Spectra: We
perform additional experiments to find on which intensity spectra the
learnable bins of our ImHistNet put emphasis on for RCC grading and
staging.

3. Efficacy of LIH in ImHistNet: To show the efficacy of our proposed
LIH layer further, we perform additional experiments by switching off
the LIH layer in the ImHistNet, and report the performance on RCC
grading and staging.

4. Comprehensive Discussion on ImHistNet Implementation: We
discuss the specific architecture and implementation of the ImHistNet
in detail.

2. Methods

In this section, we first describe the learnable image histogram layer of
the proposed ImHistNet. Then we describe the implementation details of the
learnable image histogram layer via traditional CNN filters/operations. After
that, we outline our classification network (i.e., ImHistNet) that leverages the
LIH layer to classify RCC grades and stages from CT. We comprehensively
discuss the technical insights of LIH and its implementation details in this
section, which were not covered in our preliminary work (Hussain et al.,
2019a,b).

2.1. Learnable Image Histogram

Our proposed learnable image histogram (LIH) stratifies the pixel values
in an image x into different learnable and possibly overlapping intervals (bins
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Figure 1: The graphical representation of the architecture of our learnable image histogram
using CNN layers. We also break down our piece-wise linear basis function Hx

b on top of
the figure in relation to different parts of the learnable image histogram architecture.

of width wb) with arbitrary learnable means (bin centers βb). Given a 2D
image (or a 2D region of interest or patch) x : R2 → R, the feature value
hxb : b ∈ B → R, corresponding to the number of pixels in x whose values fall
within the bth bin, is estimated as:

hxb = Φ{Hx
b } = Φ{max(0, 1− |x− βb| × w̃b)}, (1)

where B is the set of all bins, Φ is the global pooling operator, Hx
b is the piece-

wise linear basis function that accumulates positive votes from the pixels in x
that fall in the bth bin of interval [βb−wb/2, βb+wb/2], and w̃b is the learnable
weight related to the width wb of the bth bin: w̃b = 2/wb. Any pixel may vote
for multiple bins with different Hx

b since there could be an overlap between
adjacent bins in our learnable histogram. The final |B| × 1 feature values
from the learned image histogram are obtained using a global pooling Φ over
each Hx

b separately. Depending on the task-specific requirement, the pooling
can be the nonzero element count: Φ{Hx

b } =
∑P

p

∑Q
q 1 for Hx

b (p, q) > 0,
max-pooling: Φ{Hx

b } = max(Hx
b ), or average-pooling: Φ{Hx

b } = mean(Hx
b ),

where P ×Q is the total number of pixels in x. The linear basis function Hx
b

of the LIH is piece-wise differentiable and can back-propagate (BP) errors to
update βb and w̃b during training. The gradients of βb and w̃b for a loss L
are calculated from Eq. 1 as:

∂L
∂βb

=


w̃b if Hx

b > 0 and x− βb > 0,

−w̃b if Hx
b > 0 and x− βb < 0,

0 otherwise.

(2)
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∂L
∂w̃b

=

{
−|x− βb| if Hx

b > 0,

0 otherwise.
(3)
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Figure 2: Schematic representation of our LIH bins. We show four arbitrary bins with
different bin centers βb and bin widths wb.

In Fig. 2, we show a visual representation of four arbitrary LIH bins with
different bin centers βb and bin widths wb. Also note that our LIH layer can
be used at different depths of the network for multiple times, as well as can
be applied directly on an input image or on a feature map.

2.2. Design of LIH using CNN Layers

We implement the LIH using conventional CNN layers, as illustrated in
Fig. 1. The input of LIH can be a 2D or vectorized 1D image, and the output
is a |B|×1 histogram feature vector. The operation x−βb for a bin centered
at βb is equivalent to convolving the input by a 1×1 kernel with fixed weight
of 1 (i.e., with no updating by BP) and a learnable bias term βb (‘Conv 1’ in
Fig. 1). A total of B = |B| number of similar convolution kernels are used
for a set of B bins. Then an absolute value layer produces |x − βb|. This
is followed by a set of convolutions (‘Conv 2’ in Fig. 1) with a total of B
separate (non-shared across channels) learnable 1×1 kernels and a fixed bias
of 1 (i.e., no updating by BP) to model the operation of 1 − |x − βb| × w̃b.
We use the rectified linear unit (ReLU) to model the max(0, ·) operator in
Eq. 1. The final |B|×1 feature values hxb are obtained by global pooling over
each feature map Hx

b separately.
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Figure 3: Illustration of LIH generated Hx
b with variable intensity distribution. (a) Raw

CT image patch (x) of size 64× 64 pixels and four randomly selected image patches (Hx
B)

before the global pooling in Fig. 1. (b) Corresponding intensity distributions of patches
1-4 in (a) are shown with Histogram of variable bin centers βb and widths wb.

We further clarify the specific way of using ‘Conv 2’ in our proposed
LIH module. This convolution operator works differently than a typical
convolution layer. Typically, a convolution kernel shares the learnable filter
parameters among the channels. In contrast, the filter parameters of ‘Conv
2’ in our LIH are not shared among channels. Since the channels generated
from ‘Conv 1’ correspond to different learnable bins B with different bin
centers βb, ‘Conv 2’ needs to operate on each of the channels B separately to
associate different bin widths parameter w̃b. That is why ‘Conv 2’ performs
convolution on each channel separately.

In Fig. 3(a), we show an example raw CT image patch x and correspond-
ing LIH generated image patches randomly selected from the feature maps
of Hb(x) (Fig. 1). We also show the intensity distributions of the selected
patches in Fig. 3(a) in terms of a histogram in Fig. 3(b), where we can ob-
serve the learned histogram of variable bin centers βb and bin widths wb. We
also observe in Fig. 3(b) that the learned wb for different feature maps in
Hb(x) have overlaps among those.

2.3. ImHistNet Classifier Architecture

The classification network comprises ten layers: the LIH layer, five (F1-
F5) fully connected layers (FCLs), one softmax layer, one average pooling
(AP) layer, and two thresholding layers (Fig. 4). The first seven layers con-
tain trainable weights. The input is a 64×64 pixel image patch extracted
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from the kidney+RCC slices. During training, we fed randomly shuffled im-
age patches individually to the network. The LIH layer learns the variables
βb and w̃b to extract characteristic textural features from image patches. In
implementing the proposed ImHistNet, we chose B = 128 and ‘average’ pool-
ing at Hx

b . We set subsequent FCL (F1-F5) size to 4096×1. The number of
FCLs plays a vital role as the model’s overall depth is important for good
performance (Zeiler and Fergus, 2014). Empirically, we achieved good per-
formance with five FCL layers. Layers 8, 9, and 10 of the ImHistNet are used
during the testing phase and do not contain any trainable weights.

Learnable 

Image 

Histogram 

Layer

Figure 4: Multiple instance decisions aggregated ImHistNet for RCC grade and stage
classification. The light green block represents the proposed LIH layer shown in Fig. 1.

2.4. Training

We trained two separate ImHistNets for Fuhrman grading and anatomical
staging of RCC. We implemented our networks in Caffe (Jia et al., 2014) com-
mand line environment and trained by minimizing the binary cross-entropy
loss between the ground truth and predicted labels (1: Fuhrman low/stage
low, and 0: Fuhrman high/stage high). As we mentioned in Section 2.2 that
the ‘Conv 2’ operator in our LIH module needs to be applied on each chan-
nel separately, in our Caffe implementation, we used the ‘group’ strategy to
facilitate separate and parallel convolution operations on each channel in the
end-to-end learning. We set group = B. We used stochastic gradient de-
scent for updating the parameters. We employed a Dropout unit (Dx) that
drops 20%, 30%, and 40% of the units in F2, F3, and F4 layers, respectively
(Fig. 4) and used a weight decay of 0.005. The base learning rate was set to
0.001 and was decreased by a factor of 0.1 to 0.0001. We ran the training for
250,000 iterations with a batch of 128 patches. The training ran on a work-
station with an Intel 4.0 GHz Core-i7 processor, an Nvidia GeForce Titan
Xp GPU with 12 GB of VRAM and 32 GB of RAM. Our workstation runs
on Ubuntu 16.04 operating system with cuDNN version 9.0. Training the
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ImHistNet took about 5 hours to reach an error saturation. The inference
time per kidney sample is about 1 sec.

2.5. RCC Grade and Stage Classification

After training ImHistNet (layers 1 to 7) by estimating errors at layer 7
(i.e., Softmax layer), we used the full configuration (from layer 1 to 10) in the
testing phase. Although we used patches from only RCC-containing kidney
slices during training and validation, not all RCC cross-sections contained
discriminant features for proper grade identification. Thus, our trained net-
work may miss-classify the interrogated image patch. To reduce such miss
classification, we adopt a similar multiple instance decision aggregation pro-
cedure to our earlier work (Hussain et al., 2018). In this approach, we feed
randomly shuffled single image patches as inputs to the model during train-
ing. We feed all candidate image patches of a particular kidney to the trained
network during inference and accumulate the patch-wise binary classification
labels (0 or 1) at layer 8 (the thresholding layer). We then feed these labels
into a P × 1 average pooling layer, where P is the total number of patches of
an interrogated kidney. Finally, we feed the estimated average (Eavg) from
layer 9 to the second thresholding layer (layer 10), where Eavg ≥ 0.5 indicates
the Fuhrman low or stage low, and Eavg < 0.5 indicates Fuhrman high or
stage high (see Fig. 4).

3. Data

We used CT scans of 159 patients from The Cancer Imaging Archive
(TCIA) database (Clark et al., 2013). These patients’ diagnosis was clear
cell RCC, of which 64 belonged to Fuhrman low (I/II), and 95 belonged
to Fuhrman high (III/IV). Also, 99 patients were staged low (I-II), and 60
were staged high (III-IV) in the same cohort. The images in this database
have variations in CT scanner models and spatial resolution. We divided the
dataset for training/validation/testing as 44/5/15 and 75/5/15 for Fuhrman
low and Fuhrman high, respectively. For anatomical staging, we divided
the dataset for training/validation/testing as 81/3/15 and 42/3/15 for stage
low and stage high, respectively. This database does not specify the time
delay between the contrast media administration and acquisition of the im-
age. Therefore, we cannot distinguish a CT volume in terms of the corti-
comedullary and nephrographic phase. We show a summary of the data we
used in this work in Table 2:
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Items Descriptions
Modality CT
Pixel Dimensions Axial: 1.5 ∼ 7.5 mm

Coronal: 0.29 ∼ 1.87 mm
Sagittal: 0.29 ∼ 1.87 mm

Total Patients 159
Number of Males 106
Number of Females 53
Age Mean: 61.18±12.07 Y

Minimum Age: 34 Y
Maximum Age: 89 Y

Race White: 155
Black or African American: 4

Table 2: Summary of relevant and available information about the CT data
used in this work.

Our method’s input data are 2D image patches of size 64×64 pixels, taken
from a region-of-interest that contains both the kidney and RCC. We do not
require any fine pre-segmentation of the RCC. Our LIH layer can effectively
stratify the overall image intensity range into a predefined number of bins
(i.e., B). It facilitates ignoring background/unwanted intensity values from
the intensity of interest (i.e., RCC and kidney intensity). Therefore, our
method can effectively learn RCC textural features from a non-delineated
kidney and RCC. It is also essential to check if an RCC extends up to Gerota’s
fascia, as it indicates higher stages of RCC. As our approach does not use
pre-segmentation of the kidney, rather uses a loose and wide enough ROI
around the kidney and RCC, it facilitates the inclusion of surrounding areas,
including parts of Gerota’s fascia, into the analysis. Given the data imbalance
where samples for Fuhrman low are fewer than for Fuhrman high and stage
high are fewer than for stage low, we allowed more overlap among adjacent
patches for the Fuhrman low and staged high datasets. We calculate the
amount of overlap to balance the samples from both cohorts.

4. Results and Discussion

First, we present the visual representation of learned bin centers and

14



HU range

Kidney Stone

RCC

Fat

(a) (b) 

Bin Width
Bin Center

Bin Width
Bin Center

Figure 5: Illustration of the learned bin centers and widths by the proposed ImHistNet
for (a) RCC grading and (b) RCC staging. The bin centers are plotted after sorting from
low to high values of the CT Hounsfield Unit. The red boxes in both figures indicate
the Hounsfield Unit spectrum of RCC, where high variation in bin widths among the
neighboring bins are observed.

widths by the proposed ImHistNet for RCC grading and staging in Fig. 5.
Our CT data was normalized between [−1000, 3000] Hounsfield Unit (HU),
and we did not use any windowing of CT data in terms of HU values. From
the plots in Fig. 5, we see that our ImHistNet concentrates roughly between
[−500, 760] HU, the range that covers the fatty tissue [−20, −150] HU (Kim
et al., 1999), kidney [20, 45] HU (Lepor, 2000), RCC [30, 150] HU (Ching
et al., 2017), and kidney calcification [110, 760] HU (Shahnani et al., 2014).
It indicates that the ImHistNet was successful in identifying the HU range
related to kidney diseases. These figures also indicate that ImHistNet does
not require any fine pre-segmentation of the RCC. It is clear from Fig. 5(a)
and (b) that our LIH layer can effectively focus on a certain image intensity
range. If we further observe the pattern of learned bin width variations in the
close neighborhood (i.e., ∼20 neighboring bins) in both Fig. 5(a) and (b), we
see that the learned bin widths are more irregular among neighboring bins
in the region that falls within the RCC HU spectrum (shown with red boxes
in Fig. 5(a) and (b)). It indicates that the ImHistNet concentrated more
on analyzing the textural variations of the RCC for the grading and staging
tasks.

4.1. RCC Fuhrman Grade Classification

We compared our RCC grade classification performance in terms of accu-
racy to a wide range of methods. Note that we trained models with shuffled
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single image patches for all our implementations and used multiple instance
decision aggregation per kidney during inference. We fixed our patch size to
64× 64 pixels across all contrasting methods.

To provide a rigorous justification for choosing different hyper-parameters
of our proposed model, we evaluated the effects of our model’s different com-
ponents incrementally in Table 3. First, we use ResNet-50 (He et al., 2016)
with transfer learning to test the performance of conventional CNN (Ta-
ble 3). Here, we used the full kidney+RCC slices as input in experiment 1
and patches as input in experiment 2. As we mentioned in Sect. 1 that a
classical CNN typically gives less emphasis in capturing textural features, it
has become evident from the results in Table 3 where such CNNs performed
poorly in learning the textural features of RCC.

Next, to evaluate the performance of hand-engineered feature-based con-
ventional machine learning approaches, we tested a support vector machine
(SVM) employing the conventional image histogram of 128 and 256 bins,
as shown in Table 3 experiments 3 and 4, respectively. We also compared
two state-of-the-art methods (Shu et al., 2018; Meng et al., 2017), denoted
as experiments 5 and 6, where we quote authors’ best self-reported perfor-
mances. These methods mostly relied on the RCC textural features and used
classical predictive models, e.g., logistic regression. Here, the method by Shu
et al. (2018) performed the best with 77% classification accuracy (Table 3
experiment 5).
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Exp. Aspects Checked Methods NTS Acc.

Conventional CNN

1 Full image vs. Patch Full image+ResNet-50 (He et al., 2016) 30 53.33%
2 Patch+ResNet-50 (He et al., 2016) 30 50.00%

Hand-engineered Features-based Conventional Machine Learning

3 Number of Patch+Histogram (128 bins)+SVM 30 56.66%
4 Histogram-bins Patch+Histogram (256 bins)+SVM 30 63.33%

5 State-of-the-art Shu et al. (2018) (5FCV on 260 samples) - 77.00%
6 Meng et al. (2017) (L1OCV on 90 samples) - 70.00%

Hand-engineered Features-based Deep Neural Networks

7 Number of Patch+Histogram (128 bins)+5 FCL 30 50.00%
8 Histogram-bins Patch+Histogram (256 bins)+5 FCL 30 50.00%

LIH Features-based Conventional Machine Learning

9 - Patch+LIH (128 bins)+AP+SVM 30 60.00%

Combined LIH Features-based DNN and Conventional CNN

10 Full image vs. Patch Patch+LIH+AP+5 FCL ‖ AlexNet 30 53.33%
11 Full Image+LIH+AP+5 FCL ‖ AlexNet 30 50.00%

Deep Neural Network

12 Absence of Histogram Patch+5 FCL 30 36.67%

LIH Features-based Deep Neural Networks

13 Patch+LIH (128 bins)+NZEC+5 FCL 30 50.00%
14 Number of FCLs, Patch+LIH (128 bins)+AP+4 FCL 30 53.33%
15 Number of Bins, Patch+LIH (128 bins)+AP+6 FCL 30 50.00%
16 Pooling Types Patch+LIH (64 bins)+AP+5 FCL 30 50.00%
17 Patch+LIH (256 bins)+AP+ 5 FCL 30 43.33%

18 Proposed ImHistNet [LIH (128 bins)+AP+5 FCL] 30 80.00%

Table 3: Comparison of automatic RCC Fuhrman grade classification per-
formance by different methods. Acronyms used- Exp.: Experiment, NTS:
Number of test samples, Acc.: Accuracy, SVM: support vector machines,
xFCV: x-fold cross-validation, LxOCV: leave-x-out cross-validation, ‘-’: Not
reported.

Then, we examine the performance of hand-engineered features with deep
neural network (DNN) and the LIH features with SVM in experiments 7-9
in Table 3. To contrast the performance of an SVM against a DNN, in ex-
periments 7 and 8, we fed the conventional histogram (128 and 256 bins)
features to a DNN of 5 FCL with weight sizes (4096×1)-(4096×1)-(4096×1)-
(4096×1)-(2×1). We choose this FCL configuration as our ImHistNet con-
tains the same. Next, to evaluate the hand-engineered features against LIH
features, we used LIH features to train an SVM in experiment 9. We see
in Table 3 that the SVM with LIH features outperformed the SVM with
conventional histogram features.
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To evaluate the performance of a DNN, combining a conventional CNN
and ImHistNet, we added AlexNet (Krizhevsky et al., 2012) in parallel to
the ImHistNet in experiments 10 and 11. We concatenated the last FCLs
of size 4096×1 in both networks, and the whole network was trained end-
to-end. We implemented two such approaches using the full kidney+RCC
images and patches as inputs in experiments 10 and 11, respectively. To use
patches as input to the AlexNet, we upsampled those to a size of 227× 227
pixels. We observed in Table 3 that the classical CNN affect the performance
of the proposed ImHistNet negatively, i.e., results were worse than those by
ImHistNet.

In experiment 12, we also did an ablation study to check the performance
of ImHistNet without the LIH layer. The resulting DNN consists of only
5 FCLs. Then, we fed image patches directly to FCLs, without any hand-
engineered or LIH-generated intermediate features. We see from Table 3 that
the accuracy of this approach is the worst among all comparing techniques.
Thus, it is clear that our LIH layer learns discriminatory textural features.

Finally, to achieve the optimum results from LIH, we varied the number
of bins (64/128/256) and FCLs of size 4096×1 (4/5/6), and the pooling types
(AP/NZEC) with the LIH layer and present the results as experiments 13-18
in Table 3. We see that ImHistNet with 128 bins, average pooling, and 5 FCL
achieved the highest accuracy (80%) among all contrasting methods shown in
Table 3. The corresponding confusion matrix is shown in Fig. 6. The method
of Shu et al. (2018) showed the closest performance to ImHistNet with 77%
accuracy (see experiment 5 in Table 3). The estimated RCC grading accuracy
of the ImHistNet on the training data is 82%.

Figure 6: Confusion matrix showing the actual and predicted Fuhrman grades for the test
data.
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4.2. RCC Stage Classification

We also compared our RCC stage classification performance in terms of
accuracy to a wide range of methods in Table 4. To our knowledge, there is no
automatic and machine learning-based approach for RCC stage classification.
Therefore, we compare the RCC staging performance of different methods by
implementing those in our capacity. Similar to RCC grade classification, we
trained models with shuffled single image patches and used multiple instance
decision aggregation per kidney during inference. We fixed our patch size to
64×64 pixels across all contrasting methods except for ResNet-50.

Exp. Aspects Checked Methods NTS Acc.

Hand-engineered Features-based Conventional Machine Learning

19 Number of Patch+Histogram (16 bins)+SVM 30 53.33%

20 Histogram-bins Patch+Histogram (64 bins)+SVM 30 53.33%

Hand-engineered Features-based Conventional Machine Learning

21 Number of Patch+Histogram (16 bins)+5 FCL 30 50.00%

22 Histogram-bins Patch+Histogram (64 bins)+5 FCL 30 50.00%

Conventional CNN

23 - Full Image+ResNet-50 (He et al., 2016) 30 60.00%

Deep Neural Network

24 Absence of Histogram Patch+5 FCL 30 43.33%

LIH Features-based Deep Neural Networks

25 Proposed ImHistNet [LIH (128 bins)+AP+5 FCL] 30 83.33%

Table 4: Comparison of automatic RCC stage classification performance by
different methods. Acronyms used- Exp.: Experiment, NTS: Number of test
samples, Acc.: Accuracy, SVM: support vector machines.

First, to compare the performance of ImHistNet to that of traditional
hand-engineered feature-based machine learning approaches, we evaluated an
SVM as experiments 19 and 20 employing a conventional image histogram of
16 and 64 bins, respectively, and Table 4 shows a resulting poor performance
at 53% accuracy for both the cases.

Next, to contrast the performance of SVM against DNN, in experiments
21 and 22, we fed the conventional histogram (16 and 64 bins, respectively)
features to a DNN of 5 FCL with weight sizes (4096×1)-(4096×1)-(4096×1)-
(4096×1)-(2×1). We chose this FCL configuration for fairer comparisons
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since our ImHistNet contains the same. Table 4 shows that the FCL with
conventional histogram performed worse, achieving 50% accuracy.

Then we used ResNet-50 (He et al., 2016) in experiment 23 with trans-
fer learning to test the performance of high performing modern CNN (see
Table 4). We used full kidney+RCC slices of size 224×224 pixels as input.
As mentioned in Sect. 1, a classical CNN typically gives less emphasis to
capture textural features, which is evident from our results where ResNet-50
performed poorly in learning the textural features of RCC, resulting in 60%
accuracy.

We also did an ablation study for RCC staging similar to experiment 12
to check the performance of ImHistNet without the LIH layer. In experiment
24, we fed image patches directly to FCLs, without any hand-engineered or
LIH-generated intermediate features. We see from Table 4 that the accuracy
of this approach is the worst among all comparing techniques. Thus, it is
clear from here too that our LIH layer learns discriminatory textural features.

Finally, we show our proposed method’s performance in Table 4 exper-
iment 25, where ImHistNet achieved the highest accuracy (83%) among all
contrasted methods. The corresponding confusion matrix is shown in Fig. 7.
The estimated RCC staging accuracy of the ImHistNet on the training data
is 87%.

Figure 7: Confusion matrix showing the actual and predicted anatomical stages for the
test data.

4.3. Discussion

In this work, we achieved over 80% accuracy in RCC grade/stage low
and high classification using a straightforward but robust DNN architecture.
The proposed learnable image histogram layer in conjugation with five fully
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Figure 8: Illustration of the Softmax probability of each test case used in RCC (a) grading
and (b) staging. The green-shaded regions represent grade/stage low and red-shaded
regions represent grade/stage high. We also show blue-shaded regions, representing a
probability range 0.41–0.50, as an uncertain decision region.

connected layers outperformed the state-of-the-art computer vision image
classifier, i.e., ResNet (He et al., 2016). The proposed ImHistNet is also
efficient in segregating different textures in a CT image that it easily stratify
the tumor/cancer textures from the background. Thus our method does
not require any segmentation of the RCC. Besides, to our knowledge, for
the first time, we have shown that the RCC stages can also be estimated
automatically by analyzing the CT textural features of RCC.

We faced a big challenge in this work because of the small size of our
experimental dataset, especially in the RCC staging experiment. In our
159 patient cohort, the number of RCC stage I, II, III, and IV patients are
84, 15, 41, and 19, respectively. These numbers are highly imbalanced and
insufficient for some cases to train a deep neural network properly. Thus, we
choose to group them into stage low (I/II) and stage high (III/IV) as the
nature of treatment is often similar between stages I and II, and between
stages III and IV (Escudier et al., 2016; Bradley et al., 2015). Furthermore,
we used small image patches to increase the number and variability of training
samples and address class imbalances in the training data via controlling the
overlap between adjacent patches.

Although we compared RCC grading performance of the ImHistNet with
conventional machine learning approaches by Shu et al. (2018) and Meng
et al. (2017), there are two neural network-based RCC grading approaches (Ko-
cak et al., 2019; He et al., 2020) present in the literature. However, these
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methods used hand-engineered RCC features and subsequently used sim-
ple neural networks to reduce the feature dimensionality. In addition, the
method by Kocak et al. (2019) is designed for unenhanced CT, while the
method by He et al. (2020) is designed for the WHO renal tumor classi-
fication system. Therefore, the performance of these methods cannot be
compared directly to our approach.

On the other hand, we found only one CT feature-based RCC staging
approach (Ökmen et al., 2019) that used K-nearest neighbors. However, this
method is designed for TNM I-IV staging, while our approach is designed for
low and high anatomical staging. Thus, our performance cannot be compared
directly to that by Ökmen et al. (2019).

The proposed ImHistNet also produced several miss classifications in both
grading and staging tasks. To examine those miss classification cases, we plot
the Softmax probability of each test case used in RCC grading and staging
experiments in Fig. 8(a) and (b), respectively. We defined the probability
range 0.41–0.50 as an uncertain decision region, where our method fails to
decide with certainty. We see in Fig. 8(a) that the probabilities associated
with all three miss-classification of actual grade low cases fall within the
uncertain region. Two of the three probabilities associated with the three
miss classification of actual grade high cases fall within this uncertain re-
gion. Thus, our method lacked confidence in a total of five out of six miss
classification test cases in RCC grading. In the RCC staging task, we see
in Fig. 8(b) that only one of the two probabilities associated with the miss
classification of actual stage low cases fall within the uncertain region.

Image-based RCC grading and staging has a promising clinical impli-
cation. Although biopsy-based RCC grading is an inseparable part of the
clinical workflow, it often requires considerable time in the process of per-
forming the biopsy and subsequent radiological analysis. It is also reported
that percutaneous imaging-guided renal fine-needle aspiration suffered from
low sensitivity and frequent nondiagnostic results (Maturen et al., 2007). A
recent study (Patel et al., 2016) of core biopsy on 2,979 patients found a
notable Fuhrman upgrading (16%) from low to high grade after surgical re-
section of the renal mass. Since our image-based noninvasive approach covers
the full tumor region, it is less susceptive to misdiagnosis. Therefore, our ap-
proach can be useful in clinical decision support. Besides, while a patient
waits for the biopsy conduction and results, an image-based approach can
help physicians diagnose and prepare the treatment plan. The biopsy results
can confirm the decision.
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5. Conclusion

We proposed a learnable image histogram-based DNN framework for end-
to-end image classification. We demonstrated our approach on a cancer grade
and stage prediction task providing automatic 2-tiered FGS (Fuhrman low
and Fuhrman high) grade classification and stage low and stage high classi-
fication of RCC from CT scans. Our approach learns a histogram directly
from the image data and deploys it to extract representative discriminant
textural image features. We increased efficacy by using small image patches
to increase the number and variability of training samples and address class
imbalances in the training data via overlap control. We also used multi-
ple instance decision aggregation to robustify binary classification further.
Our proposed ImHistNet outperformed current competing approaches for
this task, including conventional ML, deep learning, as well as manual hu-
man radiology experts. ImHistNet appears well suited for radiomic studies,
where learned textural features from the learnable image histogram may aid
in better diagnosis.

Our proposed ImHistNet efficiently stratifies the intensity spectrum into
learnable bins. We plan to investigate a process to incorporate the spatial
texture context via learning the co-occurrence statistics within the DNN
framework. It is also essential to find an optimal architecture of ImHistNet
that can lead to better RCC analysis performance. That being said, the
problem of comprehensive exploration of possible network architectures is
beyond the scope of this work. Our future work envisions to include neural
architecture search (NAS) to find the optimal network for this work.

Furthermore, to learn domain-invariant RCC features, we plan to use the
classification and contrastive semantic alignment (CCSA) loss Yoon et al.
(2019). This approach would facilitate learning RCC-specific features irre-
spective of the data source. Thus, it would avoid a deep model being nega-
tively affected by the domain-specific features. It is also a widely accepted
fact that pathological data are scarce compared to healthy data. Another
possible future direction is to address this imbalance in training data by syn-
thesizing pathological RCC cases, as previously reported for lung nodules
in Han et al. (2019) and brain tumour synthesis in Yu et al. (2018). Syn-
thesized pathological cases may enhance the result of cross-domain training
testing.

23



Acknowledgment

We thank Nvidia Corporation for supporting our research through their
GPU Grant Program by donating the GeForce Titan Xp. We also thank
anonymous reviewers for their feedback that helped in improving the paper.

References

AAlAbdulsalam, A.K., Garvin, J.H., Redd, A., Carter, M.E., Sweeny, C.,
Meystre, S.M., 2018. Automated extraction and classification of cancer
stage mentions from unstructured text fields in a central cancer registry.
AMIA Summits on Translational Science Proceedings 2018, 16.

Andrearczyk, V., Whelan, P.F., 2016. Using filter banks in convolutional
neural networks for texture classification. Pattern Recognition Letters 84,
63–69.

Becker, A., Hickmann, D., Hansen, J., Meyer, C., Rink, M., Schmid, M.,
Eichelberg, C., Strini, K., Chromecki, T., Jesche, J., et al., 2016. Critical
analysis of a simplified fuhrman grading scheme for prediction of cancer
specific mortality in patients with clear cell renal cell carcinoma–impact
on prognosis. European Journal of Surgical Oncology (EJSO) 42, 419–425.

Bektas, C.T., Kocak, B., Yardimci, A.H., Turkcanoglu, M.H., Yucetas, U.,
Koca, S.B., Erdim, C., Kilickesmez, O., 2019. Clear cell renal cell carci-
noma: machine learning-based quantitative computed tomography texture
analysis for prediction of Fuhrman nuclear grade. European radiology 29,
1153–1163.

Bradley, A., MacDonald, L., Whiteside, S., Johnson, R., Ramani, V., 2015.
Accuracy of preoperative CT T staging of renal cell carcinoma: which
features predict advanced stage? Clinical Radiology 70, 822–829.

Chen, S., Zhang, N., Jiang, L., Gao, F., Shao, J., Wang, T., Zhang, E.,
Yu, H., Wang, X., Zheng, J., 2020. Clinical use of a machine learning
histopathological image signature in diagnosis and survival prediction of
clear cell renal cell carcinoma. International Journal of Cancer .

Ching, B.C., Tan, H.S., Tan, P.H., Toh, C.K., Kanesvaran, R., Ng, Q.S.,
Tan, M.H., 2017. Differential radiologic characteristics of renal tumours
on multiphasic computed tomography. Singapore medical journal 58, 262.

24



Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore,
S., , et al., 2013. The Cancer Imaging Archive (TCIA): maintaining and
operating a public information repository. Journal of Digital Imaging 26,
1045–1057.

Coy, H., Hsieh, K., Wu, W., Nagarajan, M.B., Young, J.R., Douek, M.L.,
Brown, M.S., Scalzo, F., Raman, S.S., 2019. Deep learning and radiomics:
the utility of Google TensorFlow™ inception in classifying clear cell renal
cell carcinoma and oncocytoma on multiphasic CT. Abdominal Radiology
44, 2009–2020.

Delahunt, B., Cheville, J.C., Martignoni, G., Humphrey, P.A., Magi-Galluzzi,
C., McKenney, J., Egevad, L., Algaba, F., Moch, H., Grignon, D.J., et al.,
2013. The international society of urological pathology (ISUP) grading
system for renal cell carcinoma and other prognostic parameters. The
American journal of surgical pathology 37, 1490–1504.

Deng, Y., Soule, E., Samuel, A., Shah, S., Cui, E., Asare-Sawiri, M., Sun-
daram, C., Lall, C., Sandrasegaran, K., 2019. CT texture analysis in the
differentiation of major renal cell carcinoma subtypes and correlation with
Fuhrman grade. European Radiology 29, 6922–6929.

Ding, J., Xing, Z., Jiang, Z., Chen, J., Pan, L., Qiu, J., Xing, W., 2018. CT-
based radiomic model predicts high grade of clear cell renal cell carcinoma.
European Journal of Radiology 103, 51–56.

Escudier, B., Porta, C., Schmidinger, M., Rioux-Leclercq, N., Bex, A., Khoo,
V., Gruenvald, V., Horwich, A., 2016. Renal cell carcinoma: ESMO clin-
ical practice guidelines for diagnosis, treatment and follow-up. Annals of
Oncology 27, v58–v68.

Feng, Z., Shen, Q., Li, Y., Hu, Z., 2019. CT texture analysis: a potential
tool for predicting the fuhrman grade of clear-cell renal carcinoma. Cancer
Imaging 19, 6.

Fuhrman, S.A., Lasky, L.C., Limas, C., 1982. Prognostic significance of
morphologic parameters in renal cell carcinoma. The American Journal of
Surgical Pathology 6, 655–663.

25



Haji-Momenian, S., Lin, Z., Patel, B., Law, N., Michalak, A., Nayak, A.,
Earls, J., Loew, M., 2020. Texture analysis and machine learning algo-
rithms accurately predict histologic grade in small (< 4 cm) clear cell
renal cell carcinomas: a pilot study. Abdominal Radiology 45, 789–798.

Han, C., Kitamura, Y., Kudo, A., Ichinose, A., Rundo, L., Furukawa, Y.,
Umemoto, K., Li, Y., Nakayama, H., 2019. Synthesizing diverse lung
nodules wherever massively: 3D multi-conditional GAN-based CT image
augmentation for object detection, in: 2019 International Conference on
3D Vision (3DV), IEEE. pp. 729–737.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778.

He, X., Wei, Y., Zhang, H., Zhang, T., Yuan, F., Huang, Z., Han, F., Song,
B., 2020. Grading of clear cell renal cell carcinomas by using machine learn-
ing based on artificial neural networks and radiomic signatures extracted
from multidetector computed tomography images. Academic Radiology
27, 157–168.

Huhdanpaa, H., Hwang, D., Cen, S., Quinn, B., Nayyar, M., Zhang, X.,
Chen, F., Desai, B., Liang, G., Gill, I., et al., 2015. CT prediction of
the Fuhrman grade of clear cell renal cell carcinoma (RCC): towards the
development of computer-assisted diagnostic method. Abdominal Imaging
40, 3168–3174.

Hussain, M.A., Hamarneh, G., Garbi, R., 2018. Noninvasive determination
of gene mutations in clear cell renal cell carcinoma using multiple instance
decisions aggregated CNN, in: International Conference on Medical Image
Computing and Computer Assisted Intervention, Springer. pp. 657–665.

Hussain, M.A., Hamarneh, G., Garbi, R., 2019a. ImHistNet: Learnable
image histogram based DNN with application to noninvasive determination
of carcinoma grades in CT scans, in: International Conference on Medical
Image Computing and Computer Assisted Intervention, Springer. pp. 130–
138.

Hussain, M.A., Hamarneh, G., Garbi, R., 2019b. Renal cell carcinoma staging
with learnable image histogram-based deep neural network, in: Interna-

26



tional Workshop on Machine Learning in Medical Imaging, Springer. pp.
533–540.

Ishigami, K., Leite, L.V., Pakalniskis, M.G., Lee, D.K., Holanda, D.G.,
Kuehn, D.M., 2014. Tumor grade of clear cell renal cell carcinoma as-
sessed by contrast-enhanced computed tomography. SpringerPlus 3, 694.

Janssen, M., Linxweiler, J., Terwey, S., Rugge, S., Ohlmann, C.H., Becker,
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