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Abstract 

Chest X-ray images are used in deep convolutional neural networks for the detection of 

COVID-19, the greatest human challenge of the 21st century. Robustness to noise and 

improvement of generalization are the major challenges in designing these networks. In this 

paper, we introduce a strategy for data augmentation using the determination of the type and 

value of noise density to improve the robustness and generalization of deep CNNs for COVID-

19 detection. Firstly, we present a learning-to-augment approach that generates new noisy 

variants of the original image data with optimized noise density. We apply a Bayesian 

optimization technique to control and choose the optimal noise type and its parameters. 

Secondly, we propose a novel data augmentation strategy, based on denoised X-ray images, 

that uses the distance between denoised and original pixels to generate new data. We develop 

an autoencoder model to create new data using denoised images corrupted by the Gaussian and 

impulse noise. A database of chest X-ray images, containing COVID-19 positive, healthy, and 

non-COVID pneumonia cases, is used to fine-tune the pre-trained networks (AlexNet, 

ShuffleNet, ResNet18, and GoogleNet). The proposed method performs better results 

compared to the state-of-the-art learning to augment strategies in terms of sensitivity (0.808), 

specificity (0.915), and F-Measure (0.737). 

Keywords: Learning-to-augment, Data augmentation, Noise, X-ray images, Classification, 

COVID-19, Deep learning. 
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1. Introduction 

1.1. COVID-19 

As a worldwide pandemic, Coronavirus disease 2019 (COVID-19) has brought about a 

health crisis affecting all aspects of human life, and much effort has been being made to contain 

the virus since its inception. In the beginning, there were not many people who had contracted 

the disease, and it was not considered a great threat as most cases were treated in a short time. 

After a while, the World Health Organization (WHO) declared that the virus had an extreme 

potential to affect millions of individuals all around the world, especially in countries that had 

weaker healthcare systems. The disease is easily transmitted through direct or indirect contact 

to the affected person [1]. The coronavirus statistics are horrifying. [2]. 

The United States (US) has recorded one of the largest numbers of COVID-19 victims, 

though it is one of the leading countries in healthcare facilities. Brazil, India, Russia, South 

Africa, and 215 other countries around the world follow the US on the list. Many governments 

and administrative authorities across the globe are still imposing non-compromising lockdown 

restriction to ensure social distancing for the containment of the disease due to the ever-

increasing number of new cases every single day [2, 3]. According to the WHO and the US 

Center for Disease Control (CDC), fever, dry cough, vomiting, diarrhea, and myalgia are the 

most common symptoms of COVID-19 infection. To reduce morbidity rates, the general 

population in all countries has been made conscious of the symptoms so that they can seek 

treatment as soon as possible. Governments have begun to invest in COVID-19 vaccines and 

related research, and thus many studies and development activities are being conducted about 

the COVID-19 pandemic.  

1.2. Detection of COVID-19 via X-ray Images 

Chest X-ray imaging has been playing a vital role in the rapid diagnosis and early 

management of COVID-19 [4, 5]. It is reportedly used for COVID-19 detection in countries 

with a shortage of testing kits [6-8]. Recent studies [9-14] using machine learning (ML) and 

deep learning (DL) have shown promising results in the diagnosis of COVID-19. For example, 

convolutional neural networks (CNNs) have been applied for the classification of X-ray images 

[9-11] among COVID-19, non-COVID pneumonia (e.g., bacterial and viral pneumonia) and 

healthy cases.  

1.3. Data Augmentation using Noise 

The quality of a chest X-ray image may be deteriorated due to different types of noise 

generated by a malfunction in X-ray receiver sensors, bit errors in transmission, and faulty 
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memory locations in the hardware [15]. Typically, noise-based data augmentation in DL is 

performed when there is a possibility of image data being corrupted by noise [16]. Data 

augmentation by noise addition is a strategy that improves the robustness and generalization of 

CNNs [17-24]. Moreno-Barea et al. [21] tested the noise injection to images from a Gaussian 

distribution, and showed it to be useful for improving CNN-based classification performance 

[23, 24]. Sezer and Sezer [25] proposed a data augmentation approach, where CNN-based 

speckle-noise reduction is used in the neonatal hip ultrasound image classification task. Their 

work introduced a method employing an optimized Bayesian non-local mean filter to reduce 

speckle noise for data augmentation. This data augmentation strategy improved the 

performance of the CNN from 92.29% to 97.70%. Ofori-Oduro and Amer [20] proposed a 

noise-robust CNN via data augmentation using Artificial Immune System. Their noise-robust 

model was tested under noise and shown to be useful for improving the performance of a CNN. 

In our previous work [23], we proposed a noise-based adaptive data augmentation method to 

increase the CNN accuracy.  

 

1.4. Current Learning-to-Augment Strategies 

Unlike conventional data augmentation approaches that use pre-defined rules and 

procedures for a specific target task, learning-to-augment strategies dynamically refine 

augmentation rules based on feedback network [26-28]. For example, Wang et al. [26] 

introduced an end-to-end compositional generative adversarial network architecture to 

generate natural and accurate face images. This model generates images of desired expressions, 

and edits the poses of faces. A reconstruction learning process was employed to re-generate 

the input data. The generators of the model encourage for preserving the important features of 

face. The augmented face images were used to train a robust expression recognition model. Cai 

et al. [27] introduced a fully data-driven and learnable framework to change the data 

distribution near reliable samples. This data augmentation method selects efficient learning 

samples and reduces the Impact of ineffective samples. Feng et al. [28] introduced an approach 

that generates new data obtained from a stationary distribution near the target data and 

implements a reinforced selector to automatically improve the augmentation strategy. 

However, these state-of-the-art methods [24-26] lack weak generalization ability under noisy 

conditions, which can cause overfitting. 
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1.5. Proposed Data Augmentation Strategy 

This paper focuses on the generation of noisy and denoised chest X-ray images as 

augmented images to improve the generalization of deep CNNs for COVID-19 detection. We 

propose a noise-based novel data augmentation approach, where our method optimizes 

parameters of different noise types to generate new data. We summarize the contributions of 

this paper below: 

1. We introduce (i) noising- and (ii) denoising-based data augmenters to improve the 

generalization of a deep CNN. The denoising-based approach further uses an 

autoencoder to generate new augmented data. 

2. We propose a “learning-to-augment” strategy to generate noisy images. The learning-

to-augment approach employs a Bayesian optimizer to determine the optimal noise 

parameters for new augmented images. 

3. We show the effectiveness of our proposed approach on a challenging task of COVID-

19 detection in chest X-ray images and outperform state-of-the-art data augmentation 

methods. 

 

2. Data 

We accumulated a dataset of 1,248 chest X-ray images of posterior–anterior view (666 images) 

and anterior–posterior view (582 images) from two public repositories [29-31]. The first 

repository contains chest X-ray images of 215 COVID-19 patients and 33 non-COVID 

pneumonia patients [30]. The second repository contains chest X-ray images of 500 healthy 

subjects and 500 non-COVID pneumonia patients [31]. We carefully eliminated the X-ray 

images of lateral view and CT images from the data cohort of first repository [28]. Table 1 

summarizes the patients’ demographics (age and sex). All the X-ray images were either in 

Portable Network Graphics (PNG) or Joint Photographic Experts Group (JPEG) file format. 

All the X-ray images were resized to a common input size for the pre-trained CNNs (i.e., 

AlexNet, GoogleNet, ResNet18, and ShuffleNet). This is a standard practice of preprocessing 

computer vision data for CNN training, and similar preprocessing for X-ray data resizing is 

also widely used in recent literature (e.g., [12-14]). On the other hand, X-ray images are stored 

and transmitted in the form of compressed data [32]. If a deep network is trained only using 

original images, the image distortion caused by lossy compression could deteriorate the test 

results. We therefore used lossless (i.e., PNG) and lossy (i.e., JPG) image compression as the 

inputs to deep convolutional neural networks.  
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Also note that we accumulated our dataset from public repositories, and the data do not 

contain the exposure time parameter associated with those. However, as the radiopacity 

variation is the key to visualize COVID-19 infection in a chest X-ray image and its quality is 

dependent on the exposure time, we assume that these X-ray images are acquired with an 

exposure more than 6 milliampere-seconds (mAs) to ensure good quality of image.  

 

Table 1: Summary of patients’ age, sex, and diagnosis. 

Items Value 

Number of images 1248 

Sex Male 512 

Female 702 

Not available 34 

Age Available 1205 

Not available 43 

Years (Mean ± Standard deviation)  48.1 ± 17.5 

Diagnosis COVID-19 215 

Non-COVID pneumonia 533 

Healthy 500 

 

Augmented data with 

noisy images

Augmented data with 

denoised images

Denoise

Learning-to-Augment

Noise

Original dataset

 

Figure 1: Schematic pipeline of the proposed learning-to-augment strategy using noisy and 

denoised data. 

3. Methods 

X-ray images often get degraded by impulse noise [15], Gaussian noise [33-35], speckle 

noise [36-38] and Poisson noise [39-42] at the time of acquisition, transmission, or storage. 
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Noisy images can be used as inputs to a CNN in two ways [39]: (i) using unprocessed noisy 

images as inputs to the networks, (ii) using denoised images as inputs to the network. When 

the noisy images are fed as inputs to the network, data augmentation using noise may improve 

the robustness of the classifier. On the other hand, if preprocessing is used to denoise images, 

then data augmentation using restored (denoised) images in training can improve the 

generalizability of the network. Figure 1 illustrates the pipeline of the proposed learning-to-

augment strategy using noisy and denoised data. 

 

3.1. Data Augmentation with Noisy Images 

Adding noise to data is one approach to data augmentation [18]. We present a method 

for learning-to-augment via noisy input images. The learning-to-augment finds optimal noise 

parameters to generate the new data. The mean and variance are parameters of the Gaussian 

and speckle noise types [35, 43]. The impulse (salt-and-pepper) noise is, on the other hand, 

specified with density parameter [44-46]. The parameters of different noise models are shown 

in Table 2. 
 

Table 2. Parameters of different noise types. 

Notation Definition 

𝜇 The mean of Gaussian and speckle noise 

𝑣 The variance of Gaussian and speckle noise 

𝑑 The noise density of impulse noise 

 

As shown in Figure 2, the proposed noisy image-based augmenter is composed of a 

noisy data generator, a controller, an augmenter, and child models. The steps of the noise-based 

data augmentation strategy are following: 

Step 1: Noisy data generator adds noise to the original images with specific noise parameters. 

In the first iteration, the parameters of noise (i.e., 𝜇, 𝑣, and 𝑑) are set randomly. Then, 

the controller determines the parameters of each noise type as a new policy.  

Step 2: The augmenter produces new data by applying the noise to the images.  

Step 3: The child CNN models are trained using new augmented data to evaluate the 

performance of data augmentation policies. 

Step 4: The controller, a Bayesian optimizer-based search algorithm [47, 48], substitutes 

existing weak policies with new data augmentation policies by exploring the search 

space of the parameters for each noise type. 
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Step 5: The above steps are repeated until the best policies, i.e., the parameters of each noise 

type, are found. 

  

As shown in Figure 1, to augment the data, the input data pool is first divided into 𝑁 

equal folds. Then a noisy data generator adds noise (e.g., impulse, Gaussian, speckle, and 

Poisson noise) to each fold separately. The raw samples of the dataset were randomly split into 

𝑁-folds to accelerate finding the best policies. Decreasing the number of samples using the N-

fold split reduces the CNN training time for each fold [49].  

The augmenters create new data based on new parameters that the Bayesian optimizer 

has found. In the next step, each fold is processed by the child CNN model. Use of child 

networks, instead of very deep CNN, in policy evaluation speeds up the execution of the 

proposed method. Based on the results of child CNNs, the controller improves weak policies 

and maintains strong policies. The controller uses the Bayesian optimizer to find the optimum 

set of augmentation policies (the parameters of each noise type) in a search space. Let 𝒢 be the 

search space and 𝑓 be the loss function of a classifier, then the Bayesian optimizer can be 

represented as: 

 

𝑦 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐺(𝐺). 𝐺 ∈ 𝒢         (1) 

 

The optimization problem in Eq. 1 aims to find 𝑦 that minimizes 𝑓(𝐺) for 𝐺 in a bounded 

domain 𝒢. The loss values of the child CNNs are used to calculate the loss function for the 

Bayesian optimizer. This process continues until the maximum iteration number is reached. 

 

3.2. Data Augmentation Approach with Denoised Data 

The proposed method provides an automatic augmentation policy search method using 

the generation of restored images that had been corrupted by noise. Noisy images can be 

restored by enhancement algorithms such as autoencoder networks [50]. However, depending 

on the noise type and density, the pixel values in the restored image and the original noise-free 

image are not exactly equal [51]. We aim to leverage the dissimilarity between restored and 

original pixels as a data augmentation strategy. First, noise of specific type and density is added 

to the image. Then, the noise is partially removed from the image by using the proposed 

autoencoder. The denoising autoencoder aims to produce the output from the noisy input, 

where the target is set as the original images. Finally, the restored images are used as augmented 

data. In the proposed noise-based data augmentation algorithm, the type and density of noise 

are important. Depending on the accuracy of the noise removal algorithm, the restored image 
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could be very similar to the original image, especially when the noise magnitude is low, which 

could thus result in an ineffective augmented image. On the other hand, if the noise magnitude 

is high and the denoising is imperfect (as expected), the pixel values of the restored images 

would be more dissimilar from the original ones. As shown in Figure 3, noise of specific 

parameters is added to the original images by the noise generator (section 3.1). The noisy 

samples are then fed as inputs to the proposed autoencoder-based denoising model.  

Add noise to each fold

Dataset

Randomly split raw samples of dataset to N-fold

Fold (1) Fold (2) ... Fold (n)

Add First noise 

type  to fold (1)

Add Second noise 

type to fold (2)
...

Add nth  
noise type  

to fold (n)

Train with child network (CNN)

Control with Bayesian optimizer 

Select top politics

New data samples

Augmenter (1) Augmenter (2) ... Augmenter (n)

Evaluator (1) Evaluator (2) ... Evaluator (n)

Policy (1) Policy (2) ... Policy (n)

Give the parameters of each noise type

First noise type 

parameters

Second noise type  

parameters
...

nth  
noise type  

parameters

Adjust the parameters of 

each noise type using the 

controller

Select N types of noise based on data type

Repeat

until maximum 

iteration number is 

reached 

 
 

Figure 2. Flowchart of our noise-based image data augmentation approach. 
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Figure 3. Flowchart of the autoencoder-restored image-based data augmentation approach. 

 

The decoding weights of the trained autoencoder can be compared to a conventional image 

denoising filter parameter. Once the autoencoder is trained, it produces new augmented image 

data from the noisy input data during inference. Like our noisy image-based augmentation 
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approach (section 3.1), here also, we feed the new augmented data as input to the child CNN 

models. The Bayesian optimizer finds optimal noise parameters. After finding the optimal 

policies, we use the whole dataset and deep convolutional autoencoder for the noise-based data 

augmentation (Figure 4). 

 Noisy dataset Augmented dataset
Convolutional encoder layers Convolutional decoder layer

Convolutional Autoencoder

Encoder
Encoder Encoder Decoder

Decoder

 

Figure 4. The proposed convolutional autoencoder learns to denoise images. 

 

4. Implementation Details 

4.1. Computational Platform and Training Details 

The proposed algorithm is trained using the deep learning toolbox of MATLAB 2020b 

in an Intel(R) Core(TM) i7-7700HQ CPU 2.81GHz with 32GB of RAM, and Nvidia GTX 1070 

GPU with 8GB VRAM. We used stochastic gradient descent with learning rate of 0.001 to 

train our networks (except for the autoencoder module) and used cross-entropy as the loss 

function. To train the autoencoder, we used Adam optimizer with learning rate of 0.001 and 

used mean squared error (MSE) as the loss function. We show the configuration of the 

autoencoder in Table 3. To cope with the limitation of our computation power, we split each 

original image of size 224×224 pixels into 64 patches of size 28×28 pixels. After training the 

autoencoder with 250 epochs, we combined the 64 patches as the restored image. We also used 

𝑁 = 2 in this study. We used 80% of the data (998 X-ray images) for training, 10% (125 X-

ray images) of the data for validation, and 10% of the data (125 X-ray images) for testing. 

Figure 5 shows sample chest X-ray images for COVID-19 positive, healthy, and non-COVID 

pneumonia cases. 

We used pre-trained CNNs and finetuned them on the COVID-19 data for the 

classification task. We evaluated the performance of four pre-trained models, AlexNet [52], 

ShuffleNet [53], ResNet18 [54], and GoogleNet [55]. All of these networks were pre-trained 

on samples from the ImageNet Challenge database. Finetuning all these models on the COVID-

19 dataset converge faster than training from scratch. Table 4 summarizes the ImageNet pre-

trained networks used in the proposed framework.  
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Table 3. The configuration of the proposed autoencoder. 

Type Layer  Output Shape # of Parameters Padding 

Input Input Layer (28, 28, 1) 0 - 

Encoder Convolution layer (28, 28, 256) 2560 Same 

Encoder ReLU - - - 

Encoder Max pooling (14, 14, 256) 0 - 

Encoder Convolution layer (14, 14, 512) 1180160 Same 

Encoder ReLU - - - 

Encoder Max pooling (7, 7, 512) 0 - 

Encoder Convolution layer (7, 7, 512) 2359808 Same 

Encoder ReLU - - - 

Decoder Upsampling (14, 14, 512) 0 - 

Decoder Convolution layer (14, 14, 256) 1179904 Same 

Decoder ReLU - - - 

Decoder Upsampling (28, 28, 256) 0 - 

Decoder Convolution layer (28, 28, 1) 2305 Same 

Decoder Sigmoid - - - 
 

Table 4. Characteristics of pre-trained models. 

Networks Depth Size 
# of Parameters 

(millions) 

Input Image Size 

(pixels) 

AlexNet 8 227 MB 61 227×227 

GoogleNet 22 27 MB 7 224×224 

ResNet18 18 44 MB 11.7 224×224 

ShuffleNet 50 5.4 MB 1.4 224×224 

 

   

(a) COVID-19 positive 

case 

(b) Healthy case (c) Non-COVID 

pneumonia case 

Figure 5. Sample chest X-ray images for (a) COVID-19, (b) healthy, and (c) non-COVID 

pneumonia cases [56]. 

 

 

 

https://www.mathworks.com/help/deeplearning/ref/googlenet.html
https://www.mathworks.com/help/deeplearning/ref/resnet18.html
https://www.mathworks.com/help/deeplearning/ref/shufflenet.html
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4.2. Adding Noise to Images and Denoising 

The noisy data generators separately add impulse noise and Gaussian noise to the chest 

X-ray images of COVID-19 positive, healthy, and non-COVID pneumonia cases in each fold 

(Figure 2). Since chest X-ray images are often corrupted by noise that is like the impulse and 

Gaussian noise, we used these two types of noise for simulation (Figure 6).  

Learning-to-augment with the restored or denoised images starts with dividing the dataset 

into 𝑁-folds (Figure 3). The controllers initialize the noise parameters randomly. The noisy 

data generators create noisy images. The input to the proposed convolutional autoencoder is 

the noisy chest X-ray images and the target is set to the original images.  

   
(a) Image corrupted by the impulse noise (𝑑 = 5%) 

 

   
(b) Image corrupted by the Gaussian noise (𝜇 = 0, 𝑣 = 0.001) 

 

Figure 6: Noise added to the chest X-ray images.  

5. Results and Discussion 

We first present qualitative results after adding noise and denoising the images (section 

5.1). We then quantify the proposed learning-to-augment strategy after finding the optimal data 

augmentation policies (section 5.2.1), and training with selected policies (section 5.2.2). 

Finally, we present our discussion on the results (section 5.2.3). It is worth noting that the 

proposed learning-to-augment strategy using noisy and denoised data significantly increases 

the diversity in the training data. Unlike conventional data augmentation approaches that use 

predefined rules and procedures for a specific target task, the proposed learning-to-augment 

strategy dynamically refines augmentation rules based on feedback networks, and thus, reduces 

the negative effect of the small size of the training dataset. 
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5.1. Qualitative Results 

 The denoised output images by the proposed convolutional autoencoder for impulse and 

Gaussian noise-corrupted X-ray images of healthy cases are shown in Figure 7. We show the 

noisy and restored chest X-ray images of the COVID-19 cases in Figure 8 and Figure 9, 

respectively. The augmenters use the outputs of the proposed convolutional autoencoder 

(restored images) to create new data. 

    

(a) Image corrupted 

with the impulse 

noise (𝑑 = 5%) 

(b) Restored image 

from the impulse noise 

(c) Image corrupted 

with the Gaussian 

noise (𝜇 = 0, 𝑣 =
0.001) 

(d) Restored image 

from the Gaussian 

noise 

Figure 7. Noise-added and restored COVID-19 positive chest X-ray images. 

 

    

(a) Image corrupted with 

the impulse noise (𝑑 =
5%) 

(b) Restored image from 

the impulse noise 

(c) Image corrupted with 

the Gaussian noise (𝜇 =
0, 𝑣 = 0.001) 

(d) Restored image from 

the Gaussian noise 

Figure 8. Noise-added and restored healthy chest X-ray images. 

 

    

(a) Image corrupted with 

the impulse noise (𝑑 =
5%) 

(b) Restored image from 

the impulse noise 

(c) Image corrupted with 

the Gaussian noise (𝜇 =
0, 𝑣 = 0.001) 

(d) Restored image from 

the Gaussian noise 

Figure 9. Noise-added and restored chest X-ray images of non-COVID pneumonia types. 
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5.2. Quantitative Results 

5.2.1. Optimal Data Augmentation Policies 

The data augmentation policies, i.e., the optimal parameters of noise, are determined by 

the Bayesian optimization algorithm. Figure 10 shows the results of the Bayesian optimizer 

to evaluate the data augmentation policies using the restored images, which were initially 

corrupted by the impulse noise. 

Learning-to-augment strategies using changing brightness, contrast, hue, saturation, and 

rotation of images are used to compare to the proposed approach. The optimal values of the 

parameters of the mentioned methods were chosen by the Bayesian optimizer for a fair 

comparison. The pre-trained networks (AlexNet, ShuffleNet, GoogleNet, and ResNet18) 

typically take input images of 3 channels (red, green, blue). Therefore, we use the same X-ray 

image and stack them three times to make the input image 3-channel. Then we use the 

augmentation operations, e.g., change of hue and saturation. As shown in Table 5, the optimal 

values of the parameters of data augmentation methods were chosen by the Bayesian optimizer 

for the AlexNet classifier.  

M
S

E

 

Figure 10. The Bayesian optimizer evaluated the data augmentation policies for restored 

images, initially corrupted by impulse noise (impulse noisy density 𝒅 = 𝟏𝟕%, MSE = 0.288). 
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Table 5. The optimal values of the data augmentation policies. 

Data augmentation method Parameters of  

the method 

Range of  

parameters 

Optimal value 

of parameters 

Error by 

AlexNet (%) 

Changing brightness of the image Value of brightness [0,1] 0.215 0.256 

Changing contrast of the image Value of contrast [0,255] 1.184 0.280 

Adjusting hue of the image Value of hue [0,1] 0.164 0.264 

Changing saturation of the image Value of saturation [0,1] 0.777 0.264 

Rotation of image Angle 0°–360° 21° 0.256 

Adding Impulse noise to the 

image 

Noise density [0,1] 0.025 0.288 

Adding Gaussian noise to the 

image 

Variance [0,1] 0.714 0.256 

Denoising image corrupted by 

impulse noise 

Noise density [0,1] 0.170 0.288 

Denoising image corrupted by 

Gaussian noise 

Variance [0,1] 0.280 0.256 

 

5.2.2. Training with the Selected Policies 

ShuffleNet with 50 layers, ResNet18 with 18 layers, and GoogleNet with 22 layers were 

used for the classification of X-ray images. The COVID-19 classification accuracy curves 

during ResNet18 training and validation with the Gaussian noise corrupted and restored images 

are shown in Figure 11. We also illustrate the ResNet18 training and validation loss curves in 

Figure 12. The confusion matrices of COVID-19 classification by the proposed data 

augmentation approach using restored images are shown in Figure 13. The results show that 

the generalization of ResNet18 has been improved using the proposed data augmentation 

method based on restored images from the Gaussian noise corruption. The results, shown in 

Figure 12, indicate that the data augmentation using the proposed noising- and denoising-based 

data augmenter performs overall better than other approaches. The ResNet18, trained with the 

restored images from the Gaussian noise corruption, performed the best among all the 

techniques.  
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Figure 11. Training and validation accuracy curves of ResNet18 in the X-ray image 

classification task. 

 

 

Figure 12. Training and validation loss curves of ResNet18 in the X-ray image classification 

task. 

5.2.3. Test Results and Discussion 

To evaluate the pre-trained deep CNN models, four metrics are employed for verifying 

the quality of the COVID-19 classification results, including accuracy, sensitivity, specificity, 

and F-Measure criteria [20, 21]. We show the quantitative comparison of different 

augmentation strategies in Figure 14, including changing brightness of the image, changing the 

contrast of the image, adjusting the hue of the image, changing the saturation of the image, 

rotation of the image, adding the impulse noise to the image, adding the Gaussian noise to the 

image, restoring the image corrupted by the impulse noise, and restoring image corrupted by 

the Gaussian noise. The pre-trained models were finetuned separately using optimal parameters 

of data augmentation methods (Table 5).  
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Data augmentation for GoogleNet via restored 

images corrupted by the impulse noise 

Data augmentation for GoogleNet via restored 

images corrupted by the Gaussian noise 

  

Data augmentation for SuffleNet via restored 

images corrupted by the impulse noise 

Data augmentation for SuffleNet via restored 

images corrupted by the Gaussian noise 

  

Data augmentation for ResNet18 via restored 

images corrupted by the impulse noise 

Data augmentation for ResNet18 via restored 

images corrupted by the Gaussian noise 

Figure 13. Confusion matrices for X-ray image classification by the proposed learning-to-

augment approach using restored images corrupted by noise. Here, ‘Normal’ represents the 

‘Healthy’ subjects and ‘Other_Pneumonia’ represents the ‘non-COVID pneumonia’ patients. 

 

In Figure 15, we show our 3-steps strategy to evaluate the X-ray image classification 

task in terms of sensitivity, specificity, and F-Measure. At each step of the evaluation, one class 

is considered positive and the others are considered negative classes. At first, we considered 

‘COVID-19’ as the positive class and the other two (i.e., healthy and non-COVID pneumonia) 

as negatives. Table 6 demonstrates the efficacy of the proposed data augmentation strategy 

using noisy and denoised images with respect to the best performance by the state-of-the-art 

learning-to-augment method that uses the modification of the brightness, hue, contrast, 

saturation, and rotation. As shown in Table 6, ShuffleNet performance for restored images (our 
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approach) is improved by 5.7% in terms of sensitivity from 54.3% to 60%, compared to 

saturation-based augmentation. Similarly, specificity of the ResNet18 method for the restored 

images is improved, from 89% to 90.9%, over the hue-based augmentation. Similarly, F-

Measure is improved from 54.8% to 62.0% for the restored images compared to contrast-based 

augmentation. Also considering ‘healthy’ as the positive class, in ResNet18, the proposed 

strategy using restored images corrupted by Gaussian noise outperformed the results of hue-

based augmentation in terms of sensitivity (from 74.1% to 81.1%). The performance of 

ShuffleNet increased in terms of specificity from 78.3% to 85.7%, when Gaussian noise-

corrupted were restored, compared to saturation-based augmentation, and with ResNet18, F-

Measure improved from 75.4% to 76.3% when images corrupted by impulse noise were 

restored rather than hue- based augmentation. Similar performance trends for the methods can 

be seen in Table 6 when the ‘non-COVID pneumonia’ cases are considered as the positive class 

in the third step. The proposed learning-to-augment strategy using denoised images corrupted 

by Gaussian noise yields the best results compared to contrast-based augmentation, for 

ShuffleNet the sensitivity was improved from 71.2% to 80.8%. Similarly, comparing with hue-

based augmentation, the specificity of ResNet18 went from 79.7% to 91.5%, and the F-

Measure of ShuffleNet was improved from 66.7% to 73.7%. 

 

Figure 14. Bar plot showing the accuracies of COVID-19 classification for different 

augmentation approaches. 
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Table 6. Comparing sensitivity, specificity, and F-measure of X-ray image classification with the 

learning-to-augment strategies.  

Augmentation  

Method 
Positive class 

GoogleNet  ShuffleNet  ResNet18 
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F
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Without data 

augmentation 

COVID-19 0.410 0.767 0.427  0.500 0.793 0.507  0.441 0.824 0.462 

Healthy 0.625 0.681 0.619  0.698 0.708 0.667  0.667 0.765 0.685 

Non-COVID pneumonia 0.574 0.718 0.590  0.604 0.778 0.634  0.725 0.716 0.679 

Brightness 

COVID-19 0.500 0.763 0.457  0.390 0.833 0.451  0.410 0.837 0.464 

Healthy 0.607 0.768 0.642  0.741 0.648 0.672  0.709 0.700 0.678 

Non-COVID pneumonia 0.685 0.704 0.661  0.566 0.778 0.606  0.647 0.743 0.641 

Hue 

COVID-19 0.459 0.773 0.459  0.486 0.830 0.514  0.471 0.890 0.533 

Healthy 0.636 0.714 0.636  0.722 0.732 0.696  0.741 0.806 0.754 

Non-COVID pneumonia 0.611 0.732 0.623  0.642 0.792 0.667  0.745 0.797 0.731 

Contrast 

COVID-19 0.364 0.815 0.427  0.371 0.767 0.377  0.515 0.870 0.548 

Healthy 0.679 0.638 0.639  0.542 0.758 0.598  0.732 0.812 0.745 

Non-COVID pneumonia 0.519 0.761 0.566  0.712 0.616 0.632  0.765 0.784 0.736 

Saturation 

COVID-19 0.436 0.826 0.479  0.543 0.756 0.500  0.485 0.804 0.478 

Healthy 0.732 0.681 0.689  0.589 0.783 0.635  0.625 0.797 0.667 

Non-COVID pneumonia 0.566 0.806 0.619  0.648 0.732 0.648  0.750 0.699 0.690 

Rotation 

COVID-19 0.375 0.812 0.423  0.500 0.793 0.507  0.421 0.839 0.471 

Healthy 0.667 0.676 0.650  0.704 0.704 0.673  0.709 0.714 0.684 

Non-COVID pneumonia 0.574 0.746 0.602  0.574 0.803 0.626  0.667 0.743 0.654 

Impulse noise 

COVID-19 0.457 0.789 0.457  0.469 0.817 0.469  0.500 0.839 0.535 

Healthy 0.643 0.739 0.655  0.673 0.771 0.685  0.722 0.746 0.703 

Non-COVID pneumonia 0.660 0.722 0.648  0.750 0.712 0.696  0.618 0.829 0.673 

Gaussian noise 

COVID-19 0.432 0.795 0.451  0.500 0.802 0.493  0.529 0.868 0.563 

Healthy 0.679 0.696 0.661  0.667 0.761 0.673  0.778 0.775 0.750 

Non-COVID pneumonia 0.615 0.740 0.621  0.685 0.746 0.679  0.698 0.833 0.725 

Restored images 

corrupted by  

the impulse noise 

COVID-19 0.425 0.835 0.479  0.410 0.849 0.471  0.459 0.909 0.548 

Healthy 0.778 0.648 0.694  0.774 0.667 0.695  0.804 0.754 0.763 

Non-COVID pneumonia 0.547 0.819 0.611  0.582 0.814 0.640  0.686 0.838 0.714 

Restored images  

corrupted by  

the Gaussian noise 

COVID-19 0.486 0.773 0.480  0.600 0.811 0.545  0.579 0.874 0.620 

Healthy 0.636 0.729 0.642  0.636 0.857 0.700  0.811 0.764 0.761 

Non-COVID pneumonia 0.600 0.757 0.629  0.808 0.726 0.737  0.611 0.915 0.710 
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Figure 15. Evaluation of the classification performance by identifying the positive and 

negative classes in three steps. 

 

We show the evaluation results in terms of sensitivity, specificity, and F-Measure metrics 

in Figure 16. The sensitivity and specificity values for the classification of COVID-19 by the 

proposed approach are better than those by other augmentation techniques. Thus, the noising- 

and denoising-based data augmenter is applicable to improve the generalization of deep CNNs 

for image classification. The performance of the COVID-19 classification task was improved 

by our methods capability to choose noise parameters. In addition, using restored images by 

the proposed autoencoder model helps to generalize CNNs.  

In a state-of-the-art method [29], Nishio et at. applied six data augmentation strategies 

on image data, consisting of ±15° rotation, ±15% x-axis shift, ±15% y-axis shift, horizontal 

flipping, and 85–115% scaling and shear transformation. They employed DenseNet201 (201 

layers deep, 77 MB size, and 20.0 million parameters) and ResNet50 (50 layers deep, 96 MB 

size, and 25.6 million parameters) for the detection of COVID-19 in chest X-ray images. The 

accuracy on the test set for DenseNet201 and ResNet50 were 78.24 ± 2.23% and 

77.76 ± 1.18%, respectively. On the other hand, according to results shown in Table 7, using 

the proposed data augmentation approach, ResNet18 (18 layers deep, 44 MB size, and 11.7 

million parameters) showed an accuracy of 77.6 ± 1.20%. With a shallower network and less 

“augmented” data, the proposed data augmentation strategy using restored image is almost as 

accurate as the state-of-the-art method. 
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Figure 16. Comparison of the sensitivity, specificity, and F-Measure of COVID-19 classification 

for different augmentation strategies. 

 

Table 7: Comparison of proposed data augmentation strategy using restored images corrupted 

by the Gaussian noise to the state-of-the-art method in term of accuracy. 

Strategy Networks’ architecture Output of data augmentation Accuracy 

Depth 

(layer) 

Size 

(MB) 

# of parameters 

(million) 

# of data 

augmentation 

methods 

# of 

augmented data 

(%) 

Nishio et al. [29] 

(DenseNet201) 
201 77 20.0 6 5998 78.24 ± 2.23 

Nishio et al. [29] 

(ResNet50) 
50 96 25.6 6 5998 77.76 ± 1.18 

Proposed  

(ResNet18) 
19 44 11.7 1 998 77.60 ± 1.20 
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6. Conclusion 

In this paper, we proposed a learning-to-augment strategy using noisy and restored images to 

improve the generalizability of deep CNNs. Using a novel noise-based data augmentation approach, we 

tackled the overfitting problem of deep CNNs for automatic identification of COVID-19 in the chest 

X-ray images. A noisy data generator, a Bayesian optimizer-based controller, an autoencoder network, 

child augmenters, and child CNN models are key components of our proposed noising- and denoising-

based data augmenter that increase the accuracy of the image classification task. Learning-to-augment 

strategies, including changing brightness of the image, changing the contrast of the image, adjusting the 

hue of the image, changing the saturation of the image, and the rotation of the image have been 

compared to the proposed method (adding impulse noise to an image, adding Gaussian noise to an 

image, restoring image corrupted by impulse noise, and restoring image corrupted by Gaussian noise). 

The proposed data augmenter also achieved the best performance in COVID-19, healthy, and non-

COVID pneumonia classification in terms of sensitivity, specificity, and F-Measure. The learning-to-

augment strategy on the restored Gaussian noise-corrupted images in a pretrained ResNet18 adapts 

properly on the new and previously unseen data (test set) and showed better classification accuracy 

compared to the state-of-the-art data augmentation approach. So, we can conclude that the proposed 

strategy improves the generalization of deep CNN.   
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