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Abstract. Accurate estimation of kidney volume is essential for clinical
diagnoses and therapeutic decisions related to renal diseases. Existing
kidney volume estimation methods rely on an intermediate segmenta-
tion step that is subject to various limitations. In this work, we propose a
segmentation-free, supervised learning approach that addresses the chal-
lenges of accurate kidney volume estimation caused by extensive varia-
tions in kidney shape, size and orientation across subjects. We develop
dual regression forests to simultaneously predict the kidney area per
image slice, and kidney span per image volume. We validate our method AQ1

on a dataset of 45 subjects with a total of 90 kidney samples. We obtained
a volume estimation accuracy higher than existing segmentation-free (by
72 %) and segmentation-based methods (by 82 %). Compared to a single
regression model, the dual regression reduced the false positive area-
estimates and improved volume estimation accuracy by 41 %. We also
found a mean deviation of under 10 % between our estimated kidney
volumes and those obtained manually by expert radiologists.

1 Introduction

The economic burden of chronic kidney disease (CKD) is significant, estimated
in Canada in 2007 at $1.9 Billion just for patients with end-stage renal disease
(ESRD) [1]. In 2011, about 620,000 patients in United States received treatment
for ESRD either by receiving dialysis or by receiving kidney transplantation [2].
ESRD is the final stage of different CKDs, e.g. Autosomal dominant polycystic
kidney disease (ADPKD), renal artery atherosclerosis (RAS), which are associ-
ated with the change of kidney volume. However, detection of CKDs are compli-
cated; multiple tests such as the estimated glomerular filtration rate (eGFR) and
serum albumin-to-creatinine ratio may not detect early disease and may be poor
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2 M.A. Hussain et al.

at tracking progression of disease [3]. Recent works [2,4] have suggested kidney
volume as the potential surrogate marker for renal function and is thus useful
for predicting and tracking the progression of different CKDs. In fact, the total
kidney volume has become the gold-standard image biomarker for the ADPKD
and RAS progression at early stages of this disease [4]. In addition, the renal
volumetry has recently emerged as the most suitable alternative to renal scintig-
raphy in evaluating the split renal function in kidney donors as well as the best
biomarker in follow-up evaluation of kidney transplants [2]. Consequently, esti-
mation of the ‘volume’ of a kidney has become the primary objective in various
clinical analyses of kidney.

Traditionally, the kidney volume is estimated by means of segmentation.
However, existing kidney segmentation algorithms have various limitations (e.g.
requiring user interaction, sensitivity to parameter setting, heavy computa-
tion). For example, Yan et al. [5] proposed a simple intensity thresholding-based
method, which is often inaccurate and was limited to 2D. Other intensity-based
methods have used graph cuts [6] and active contours/level sets [7]. But these
methods are sensitive to the choice of parameters [8], which often need to be
tweaked for different images. In addition, the graph cuts [6] and level sets-based
[7] methods are prone to leaking through weak anatomical boundaries in the
image, and often require considerable computation [8]. The method proposed by
Lin et al. [9] relies extensively on prior knowledge of kidney shapes. However,
building a realistic model of kidney shape variability and balancing the influence
of the model on the resulting segmentation are non-trivial tasks.

To overcome the aforementioned limitations of the traditional methods, a
number of kidney segmentation methods have been proposed based on supervised
learning [10–12]. Cuingnet et al. [10] used a classification forest to generate a kid-
ney spatial probability map and then deformed a ellipsoidal template to approxi-
mate the probability map and generate the segmentations. Due to this restrictive
template-based approach, it is likely to fail for kidneys having abnormal shape
due to disease progression and/or internal tumors. Therefore, crucially, [10] did
not include the truncated kidneys (16 % of their data) in their evaluation. Even
then, their proposed method did not correctly detect/segment about 20 % of left
and 20 % of right, and failed for another 10 % left and 10 % right kidneys of their
evaluation data set. Glocker et al. [11] used a joint classification-regression forest
scheme to segment different abdominal organs, but their approach suffers from
leaking, especially for kidneys, as evident in their results. Thong et al. [12] showed
promising kidney segmentation performance using convolutional networks, how-
ever, it was designed only for 2D contrast-enhanced computed tomography (CT)
slices.

Recently, supervised learning-based direct volume estimation methods, which
eliminate the segmentation step altogether, have become attractive and shown
promise in cardiac bi-ventricular volumetry [8,13]. These methods can effec-
tively bypass the computation complexities and limitations of segmentation-
based approaches while producing accurate volume estimates. Although these
methods require manual segmentation during the training phase; once deployed,
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Segmentation-Free Estimation of Kidney Volumes in CT 3

the trained algorithm can respond to quick clinical queries by skipping the seg-
mentation step. This idea of direct volume estimation can be effectively adapted
to kidneys, when inferring the scalar-valued kidney volume (e.g. in mm3) is the
ultimate goal. But kidney anatomy varies more extensively across patients than
that of the target anatomy in [8,13]. Therefore, a more robust learning-based
direct approach is necessary for accurate estimation of kidney volumes.

In this paper, we propose a novel method for direct estimation of kidney vol-
umes for 3D CT images with dual regression forests that omits the error-prone
segmentation step. Given an approximate kidney location within the 3D CT
images, our method uses dual random forests, one to predict the kidney area in
each axial image plane, and another to enhance the results by removing outliers
from the initially estimated areas. We adopt a smaller subpatch-based approach
instead of a full 2D patch (as in [8,13]) in order to increase the number of obser-
vations, which ultimately improved our results. Using this novel combination of
‘dual regression’ and ‘subpatch’, our method outperforms the single forest+full
patch-based method [13]. We use kidney appearance, namely intensity and tex-
ture information to generate features. Note that kidney localization (i.e. locating
a 3D kidney bounding box inside the full CT volume) is not the aim of our work
since quick manual localization is acceptable for the clinical workflow, as con-
firmed by our clinical collaborators. Nevertheless, existing localization methods
may be applied prior to using our method, e.g. [10]. Even if only a crude auto-
localization is available, our method performs inference on a generously bigger
bounding box to avoid any kidney truncation.

2 Methods

Our volume estimation technique is divided into three steps as shown in Fig. 1.
In Sect. 2.1, we discuss the 2D image patch representation. Then, in Sect. 2.2,
we discuss the training of regression forests and subsequent prediction of kidney
areas. Finally, in Sect. 2.3, we discuss the estimation of kidney volumes based on
predictions by the dual regression forests.

Fig. 1. Flowchart showing different components of the proposed method.
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Fig. 2. Illustration of (a) the representation of our 2D image patch containing kidney,
and (b) the formation of feature vectors from its subpatches.

2.1 Image Representation

We divide each image patch into square subpatches (Fig. 2(a)). Then, in order
to obtain the prediction of the kidney area for each of the sub-patches, we train
a regression forest with these sub-patches as observations. We use various fea-
tures Fi for each subpatch p: (1) the sum of image intensities

∑
p I; (2) sum of

non-overlapped binned intensities
∑

p Ib, where b stands for different bin num-
bers and min(I) ≤ Ib ≤ max(I); (3) entropy E = −∑

h × log2(h), where h
are the histogram counts of I; (4) sum of image intensity ranges

∑
p R, which is

(max value - min value) in a 3× 3 pixel neighborhood around the corresponding
pixel; (5) sum of standard deviations

∑
p SD, where SD is estimated in a 3 × 3

neighborhood pixels around the corresponding pixel; and (6) axially aligned dis-
tances DE , DW , DN and DS of the interrogated subpatch center from the east,
west, north and south boundaries of the 2D image patch, respectively (Fig. 2(a)).
Features (3)–(5) capture the texture information in each subpatch.

2.2 Learning and Prediction

Regression forest 1 (Fig. 1) learns the correspondence between input features and
kidney areas for training subpatches, and then predicts kidney areas in unseen
subpatches. For feature matrix v = (F1,F2, ...,Fd), where Fi is a feature vector
(Fig. 2(b)) and d is the total number of features, forest 1 learns to associate obser-
vations Fi(r, s), (i = 1, .., d) with a continuous scalar value yk(r, s) which is the
estimated kidney area in the corresponding subpatch pk

r,s. Here, k is the patch
index, and r and s are the subpatch indices along the posterior-anterior (P-A)
and right-left (R-L) directions, respectively. The distribution of estimated kidney
area values D(ỹ) vs. subpatches for a kidney sample is shown in Fig. 3(b). How-
ever, due to extensive variation in kidney shapes, sizes and orientations across
subjects, we observed that non-zero volumes are predicted for areas devoid of
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Segmentation-Free Estimation of Kidney Volumes in CT 5

Fig. 3. (a) Schematic diagram showing an example investigated ROI and its most likely
kidney-area vs. subpatches distribution. (b) A typical distribution of predicted kidney-
area vs. subpatches (red), overlaid on the actual kidney-area vs. subpatches (deep blue).
Predicted areas include false positive outliers as shown with the light-blue dashed-
boxes. (c) An example plot of a predicted kidney span. (d) The final distribution of the
filtered kidney-area vs. subpatches, overlaid on the actual kidney-area vs. subpatches
where most of the outliers are removed. (Color figure online)

kidney tissue (Figs. 3(a) and (b)). These false positives are removed using a spa-
tial filter (Fig. 3(c)) having an extent (or bandwidth) equal to a spatial kidney
span measure (along superior-inferior direction). This important span parameter
is learnt by forest 2. For training forest 2, we rearrange (i.e. negligible extra com-

putations) the feature vectors as F̂
k

i =
∑a×b

m=1 Fk
i (m), where a and b are the total

number of subpatches along the P-A and R-L directions, respectively. We define
a unit step function U(ũ) whose spatial bandwidth is equivalent to the span ũ
predicted by forest 2 for a particular kidney sample (Fig. 3(c)). We approximate
the most probable kidney span in the false positives-corrupted D by calculating
the cross-correlation between D and U defined as ρ(l) =

∑Q
q=1 D(q) · U(q + l),

where Q is the total number of subpatches in an investigated ROI containing
kidney. The lag corresponding to the maximum of ρ(l), lmax = argmaxl{ρ(l)}
is then used to align U with D. Finally, an element-wise multiplication D · U
generates the filtered area distribution (Df ), where almost all of the false posi-
tives are removed (Fig. 3(d)). Note that although we use subpatches, we are not
labeling every pixel, as done for classification-based segmentation in [10–12], but
rather inferring a scalar area for every subpatch.

2.3 Kidney Volume Estimation

There are some subpatches that completely lie inside the kidney cross-section,
and we expect the predicted kidney areas for those subpatches to be the maxi-
mum, SA (area of a subpatch). However, we observed that almost no predicted-
subpatch-area (by forest 1) reaches this obvious maximum value SA. On the
other hand, there are few false positives still left inside the filtered area dis-
tribution Df . We therefore choose an empirical threshold g and fine tune Df

as: Df (p) = 0, if Df (p) < g, and Df (p) = SA, if SA − Df (p) < g. Finally,
we estimate the volume of a kidney by integrating the areas in Df in the axial
direction.
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3 Validation Setup

We acquired abdominal CT images from 45 patients using the CT scanner
Siemens SOMATOM Definition Flash (Siemens Healthcare GmbH, Erlangen,
Germany) at Vancouver General Hospital, Vancouver, BC, Canada with all
ethics review board approvals in place. Prior to image acquisition, 30 of the
patients were injected with a contrast agent. We were able to use a total of 90
kidney samples (both left and right kidneys) from which 46 samples (from 23
randomly chosen patients) were used for training and the rest as unseen. The in-
plane pixel size ranged from 0.67 to 0.98 mm and the slice thickness ranged from
1.5 to 3 mm. The ground truth kidney volumes (referred to as ‘actual volumes’)
were calculated from kidney delineations performed by expert radiologists. We
used a leave-one-kidney-sample-out cross-validation approach on the training set
to choose suitable tree and leaf sizes. We use the subpatch size 5 × 5 pixels, and
g = SA/5 throughout the paper.

4 Results

We provide comparative results of our proposed method with those obtained by
four generic approaches: two segmentation algorithms, a näıve clinical method,
a deep learning method, and three forest-based approaches. But first, we show
the performance of the proposed method visually in Fig. 4(a) where we illustrate
the correlation between the actual and estimated kidney volumes. This figure
shows that, aside from few exceptions, almost all of the estimates are close to
their corresponding ground truth measurements.

We also show the performance comparison of the execution time, volume
estimation accuracy, and extra-time requirements for parameter optimization for
different methods in Fig. 4(b). We see in Fig. 4(b): rows 1 & 2 that it was neces-
sary to use extra-time for kidney-sample-wise parameter optimization for both

Fig. 4. (a) Scatter plot showing the volume correlations between the actual and pro-
posed dual regression-based estimates, and (b) a table showing a comparison of volume
estimation accuracies, estimation speeds, and requirements of extra-time for parameter
optimization during the execution for different types of methods. Execution time is the
Matlab(R) runtime on Intel(R) Xeon(R) CPU E3 @ 3.20GHz with 8 GB RAM.
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segmentation-based approaches. Although it is possible to find optimal settings
of parameters for active contours and other energy-minimizing segmentation
methods through cross-validation, the pursuit for optimal parameters is compu-
tationally expensive and near infeasible. We also see in row 1 that the estimated
mean volume error (MVE) for the intensity thresholding-based method is the
highest since it cannot differentiate between two different organs if the intensities
associated with these organs fall inside the same user-defined/automatically cho-
sen range. On the other hand, the 3D active contours-based method [7] produces
kidney surface which leaks through the weaker boundaries even with the most
optimal empirical parameter configuration. As a result, the MVE performance
is poor (Fig. 4(b): row 2). Moreover, it is time inefficient as well.

Then we consider a manual approach which is typically used by the radiolo-
gists in the clinical settings. The experts obtain three major axes on a kidney,
which correspond to a 3D ellipsoid that approximates that particular kidney. In
Fig. 4(b): row 3, we see that the estimated MVE (computed by expert radiolo-
gists) for this approach is approximately 15 % with high standard deviations. In
addition, it takes around 3 min per kidney sample.

Next we consider a segmentation-free convolutional neural network-based
deep learning method, where a particular 2D image patch (see Fig. 2(a)) is used
as a single observation domain. We see in Fig. 4(b): row 4, that the estimated
MVE is similar to that of single forest+2D subpatch-based approach (row 6) but
is worse, however, than the manual clinical approach (row 3).

Finally, we consider four segmentation-free approaches using regression
forests. The first approach [13] uses single forest+2D patch and the correspond-
ing MVE performance is poor as seen in row 5. This approach works well for car-
diac bi-ventricles but fails for kidney, since sizes, shapes and orientations of kid-
neys vary more extensively across subjects. Subsequently, we adopt an efficient
approach of learning using image subpatches (5×5 pixels). This subpatch-based
approach improves the MVE performance than that of the patch-based approach
(see rows 5 & 6). However, these subpatch-based results are still corrupted by
the false positive estimates. We also tested using 3D subpatches (5×5×2 voxels).
Since CT axial resolution is lower than those of the coronal and sagittal, 5×5×2
closely resembles a cube shape. However, we see in row 7 that the corresponding
MVE is worse than that of 2D subpatches (row 6). We suspect that this poor
performance may be caused by the reduced number of training samples. The pro-
posed method (dual regression+2D subpatch) combines the 2D subpatch-based
area prediction and patch-based kidney span prediction, which ultimately gives
the best improvement of volume estimation. While the mean accuracy of the
forest 2-based kidney span prediction is approximately 95.5 % alone, the Table
(row 8) shows that the MVE by the proposed method falls below 10 %, with
the cost of a prediction time of ∼4 sec per kidney sample, which can be further
accelerated via a GPU-implementation.

5 Conclusions

In this paper, we proposed an effective method for direct estimation of kidney
volumes from 3D CT images. We formulated our volume estimation problem
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8 M.A. Hussain et al.

as a 2D subpatch learning-based regression problem and were able to avoid
the problematic segmentation step. Though kidney shapes, sizes and orienta-
tions vary extensively across subjects, we addressed this challenge by adopting a
dual regression forest formulation that were trained by making use of the same
extracted image features and their combined predictions resulted in satisfactory
kidney volume estimates. Our experimental results showed that the proposed
method can estimate kidney volumes with high correlation compared with those
obtained manually by expert radiologists (89 %) and reported the MVE of 10 %.

References

1. Zelmer, J.L.: The economic burden of end-stage renal disease in canada. Kidney
Int. Masson SAS. 72(9), 1122–1129 (2007)

2. Diez, A., Powelson, J., et al.: Correlation between CT-based measured renal vol-
umes and nuclear-renography-based SRF in living kidney donors. clinical diagnostic
utility and practice patterns. Clin. Transplant. 28(6), 675–682 (2014)

3. Connolly, J.O., Woolfson, R.G.: A critique of clinical guidelines for detection of
individuals with chronic kidney disease. Neph. Clin. Pract. 111(1), c69–c73 (2009)

4. Widjaja, E., Oxtoby, J.W., et al.: Ultrasound measured renal length vs. low dose
CT volume in predicting single kidney GFR. Br. J. Radiol. 77, 759–764 (2014)

5. Yan, G., Wang, B.: An automatic kidney segmentation from abdominal CT images.
IEEE Intell. Comput. Intell. Syst. 1, 280–284 (2010)

6. Li, X., Chen, X., Yao, J., Zhang, X., Tian, J.: Renal cortex segmentation using
optimal surface search with novel graph construction. In: Fichtinger, G., Martel, A.,
Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 387–394. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23626-6 48

7. Zhang, Y., Matuszewski, B.J., Shark, L.K., Moore, C.J.: Medical image segmen-
tation using new hybrid level-set method. In: BioMedical Visualization, pp. 71–76
(2008)

8. Zhen, X., Wang, Z., Islam, A., Bhaduri, M., Chan, I., Li, S.: Multi-scale deep
networks and regression forests for direct bi-ventricular volume estimation. Med.
Image Anal. 30, 120–129 (2016)

9. Lin, D.T., Lei, C.C., Hung, S.W.: Computer-aided kidney segmentation on abdom-
inal CT images. IEEE Trans. Inf. Tech. Biomed. 10(1), 59–65 (2006)

10. Cuingnet, R., Prevost, R., Lesage, D., Cohen, L.D., Mory, B., Ardon, R.: Automatic
detection and segmentation of kidneys in 3D CT images using random forests. In:
Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol.
7512, pp. 66–74. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33454-2 9

11. Glocker, B., Pauly, O., Konukoglu, E., Criminisi, A.: Joint classification-regression
forests for spatially structured multi-object segmentation. In: European Conference
on Computer Vision, pp. 870–881 (2012)

12. Thong, W., Kadoury, S., Piche, N., Pal, C.J.: Convolutional networks for kidney
segmentation in contrast-enhanced CT scans. Comput. Methods Biomech. Biomed.
Eng.: Imaging Visual., 1–6 (2016)

13. Zhen, X., Wang, Z., Islam, A., Bhaduri, M., Chan, I., Li, S.: Direct estimation of
cardiac bi-ventricular volumes with regression forests. In: Golland, P., Hata, N.,
Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp.
586–593. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10470-6 73

A
u

th
o

r 
P

ro
o

f

http://dx.doi.org/10.1007/978-3-642-23626-6_48
http://dx.doi.org/10.1007/978-3-642-33454-2_9
http://dx.doi.org/10.1007/978-3-319-10470-6_73


Author Queries

Chapter 19

Query
Refs.

Details Required Author’s
response

AQ1 Please confirm if the corresponding author is correctly
identified. Amend if necessary.

A
u

th
o

r 
P

ro
o

f



MARKED PROOF

Please correct and return this set

Instruction to printer

Leave unchanged under matter to remain

through single character, rule or underline

New matter followed by

or

or

or

or

or

or

or

or

or

and/or

and/or

e.g.

e.g.

under character

over character

new character 

new characters 

through all characters to be deleted

through letter   or

through characters

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

Encircle matter to be changed

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

linking characters

through character    or

where required

between characters or

words affected

through character    or

where required

or

indicated in the margin

Delete

Substitute character or

substitute part of one or

more word(s)
Change to italics

Change to capitals

Change to small capitals

Change to bold type

Change to bold italic

Change to lower case

Change italic to upright type

Change bold to non-bold type

Insert ‘superior’ character

Insert ‘inferior’ character

Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert or substitute space

between characters or words

Reduce space between
characters or words

Insert in text the matter

Textual mark Marginal mark

Please use the proof correction marks shown below for all alterations and corrections. If you  

in dark ink and are made well within the page margins.

wish to return your proof by fax you should ensure that all amendments are written clearly


