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Abstract. Bone localization in ultrasound (US) remains challenging de-
spite encouraging advances. Current methods, e.g. local image phase-
based feature analysis, showed promising results but remain reliant on
delicate parameter selection processes and prone to errors at confounding
soft tissue interfaces of similar appearance to bone interfaces. We propose
a different approach combining US strain imaging and envelope power
detection at each radio-frequency (RF) sample. After initial estimation
of strain and envelope power maps, we modify their dynamic ranges into
a modified strain map (MSM) and a modified envelope map (MEM)
that we subsequently fuse into a single combined map that we show cor-
responds robustly to actual bone boundaries. Our quantitative results
demonstrate a marked reduction in false positive responses at soft tissue
interfaces and an increase in bone delineation accuracy. Comparisons to
the state-of-the-art on a finite-element-modelling (FEM) phantom and
fiducial-based experimental phantom show an average improvement in
mean absolute error (MAE) between actual and estimated bone bound-
aries of 32% and 14%, respectively. We also demonstrate an average
reduction in false bone responses of 87% and 56%, respectively. Finally,
we qualitatively validate on clinical in vivo data of the human radius and
ulna bones, and demonstrate similar improvements to those observed on
phantoms.

Keywords: Ultrasound, bone, strain imaging, segmentation.

1 Introduction

Fluoroscopy remains the primary intraoperative imaging modality for bone bound-
ary visualization in computer assisted orthopaedic surgery systems. The associ-
ated radiation exposure posing risks to both patients and surgical teams gave
rise to recent interest in safer non-ionizing real-time intraoperative imaging al-
ternatives such as US [1].

In US guided surgical intervention, bone localization in US images is essential
for visualization and guidance, e.g. during fragment positioning in fracture reduc-
tion surgeries [1]. Despite recent advancement in US intensity-based automatic
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bone segmentation, results remain unpredictable due to the high levels of speckle
noise, reverberation, and signal drop out [1]. Recent work by Hacihaliloglu et.
al. [2] on local image phase feature-based bone segmentation addressed some
of these limitations however remains prone to false positive bone responses at
soft tissue interfaces that commonly exhibit similar intensity profiles as bone
interfaces.

Elastography is an emerging medical diagnostic tool for capturing the me-
chanical properties (e.g. stiffness) of biological tissue [3]. Elastography has shown
promise in the detection of breast and prostate tumors, liver cirrhosis, vascular
plaques [3], and ligament-bone insertion. However, in the bone imaging litera-
ture, US elastography has been very limited. In [4], bone detection using US
elastography was investigated. The reported strain images, however, showed low
contrast between the hard bone and soft tissue regions. In addition, problems
arose from signal windowing as window-based elastography (WBE) methods
have limitations associated with the size of the window segments. A significant
amount of noise in the strain image can be easily introduced with the choice of
smaller window size and/or large overlap between successive windows [3].

In this paper, we propose a novel method for robust bone boundary localiza-
tion based on combined US strain imaging and envelope power signal detection.
Our method uses real-time strain imaging based on analytic minimization (AM)
of regularized cost functions [5]. The AM method estimates strain for each of
the RF samples, so the resulting strain image has better spatial resolution than
that of the WBE methods, and does not suffer from window-related artifacts.
Furthermore, WBE methods often produce distorted strain estimates due to the
amplitude modulation effect even if there is no displacement estimation error [6].
In contrast, the cost functions used in the AM method incorporate a measure
of the similarity of RF data intensity as well as displacement continuity, which
makes the method robust to echo de-correlations present throughout the image;
in turn, this produces smoother transitions across bone/soft tissue interfaces.
To better delineate the bone boundary, we combine the envelope power map
with the strain image. We use the envelope power map rather than an envelope
or log-compressed envelope map (i.e. B-mode) as it possesses a higher dynamic
range. As elastography estimates tissue stiffness, we achieve a marked reduction
of false positive bone responses at the soft tissue interfaces.

2 Methods

Our method is divided into three parts. In Sect. 2.1, we discuss the strain map
estimation and subsequent processing of it. Then, in Sect. 2.2, we discuss the
estimation of the envelope power map and its further processing. Finally, in Sect.
2.3, we discuss our integration procedure of the strain and envelope power maps.

2.1 Estimation of Modified Strain Map (MSM)

The AM-based strain estimation method has been described in detail elsewhere
[5]. However, in brief, the AM method estimates tissue displacement from the
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pre- and post-compression RF echo frames using a regularized cost function
that incorporates three regularizing parameters and representations of the esti-
mated axial and lateral displacements. The cost function is partial-differentiated
with respect to the displacements and set to zero. Assumptions related to the
depth dependence of US attenuation, the size of lateral displacements and the
displacement at the transducer face are introduced to simplify the solution of
the problem, and a Kalman filter-based method is adopted to estimate the final
strain S from the estimated displacement map [5]. Finally, to produce a strain
map with a dynamic range roughly equivalent to that of the envelope power
map, we estimate the MSM = Ŝ/ŜM , where Ŝ =| (−S)+ | median(−S) ||, ŜM

is the maximum of Ŝ, and median is the median operator.

2.2 Estimation of Modified Envelope Map (MEM)

As the strain is mapped with respect to the pre-compression RF frame, we use
the same pre-compression RF frame to generate the MEM so that it can be
spatially matched to the MSM. The envelope of a RF scan-line at column j is
calculated as Ej(i) =| H[I1,j(i)] | [7], where H denotes the Hilbert transform.

Finally, we estimate MEM = Ê/ÊM , where Ê = E2 and ÊM is the maximum

of Ê.

2.3 Fused Map (FM) Estimation and Bone Boundary Localization

Our final step involves fusing the MSM and MEM into a single FM measure as

FM = λ×MSM+ (1− λ)×MEM, (1)

where λ is the weight. To choose a suitable value of λ, we analyse the effect of
this choice on the accuracy of the bone boundary localization in an FEM-based
simulation of a noisy environment (i.e. 10dB SNR). Fig. 1(h) shows the MAE as
a function of different values of λ ranging from 0.3 to 0.7. From this figure we see
that the mean MAE is minimized for λ = 0.5. While this value for λ may not be
optimal under all possible imaging situations, the results seem to be relatively
insensitive to this choice, so we opted to set λ = 0.5 for this study. However, after
estimating the FM, the maximum intensity point along each scan-line of the FM
is detected and the final bone boundary is estimated using a local linear-fit with
a length of 3mm over the detected intensity points.

3 Validation Setup

Simulated Phantom. We built a 40mm×40mm FEM phantom using the AN-
SYS analysis software (ANSYS, Inc., Canonsburg, PA) and then generated an
ultrasound simulation of the model using Field II [8]. Our phantom mimicked
an US scan of the human distal radius bone with a total number of nodes of
55,180. The stiffness of the homogeneous soft tissue and bone region were set to
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10kPa and 10GPa, respectively as previously reported in the literature [9]. Our
phantom was compressed from the top using a larger-width planar compressor in
free-hand fashion. An ultrasonic transducer of center frequency, f0 = 5MHz and
band-width = 50% was used to simulate the phantom scan from the top. The
total number of scan lines was set to 128. We set an applied pressure level that
corresponds to 1% average strain. In addition, we did not model out-of-plane
motion.

Experimental Physical Phantom. We constructed an experimental phan-
tom using a radio-opaque Sawbones hemi-pelvis (Sawbones, Pacific Research
Laboratories, Inc., Vashon Island, WA), model number 1297-22. A portion of
the pelvis was suspended in a PVC gel and placed in an acrylic tube. A high
resolution peripheral quantitative computed tomography (CT) machine, model
HR pQCT Xtreme CT (Scanco USA, Inc., Wayne, PA) was used to acquire a
single 482×482×402 (lateral×axial×elevational) voxel volume with a resolution
of 0.25mm2. In addition, US was acquired using a SonixRP (Ultrasonix Med-
ical Corporation, Richmond, BC) scanner integrated with a L14-5W/60 probe
operating at 10MHz.

Real In Vivo Data. We acquired three sets of in vivo US data with free-hand
compression from three volunteers (volunteer-I: 25-year old male; volunteer-II:
26-year old male; volunteer-III: 24-year old male) after proper prior consent
was obtained. US was acquired using a SonixRP (Ultrasonix Medical Corpora-
tion, Richmond, BC) scanner integrated with a L14-5W/60 probe operating at
10MHz. The study was approved by our institutional review board (IRB).

4 Results and Discussion

We provide comparative results of our proposed method with the automatic
adaptive parameterization in local phase feature-based bone segmentation in
US (APS) [2] method using the FEM phantom, experimental phantom and in
vivo data. The initial parameters in the APS method are chosen according to
[2] such that the best possible bone map is generated. We calculate MAE that

is defined as MAE = 1
N

∑N
k=1 | A(k) − G(k) |, where N is the approximated

number of columns on which the bone boundary spans, A is the matrix con-
taining the actual bone boundary points (ground truth), and G is the matrix
containing the estimated bone boundary points. As ground truth, we use the es-
timated bone boundaries from the ideal elastogram and CT image for the FEM
and experimental phantom, respectively. We also estimate mean signed distance
(MSD) [2] for quantitative evaluation of the false positive responses produced by
the proposed and APS method using the FEM and experimental phantom data.
Signed distance of a bone response in any scan-line is estimated with respect to
the actual bone position along that particular scan-line. Note that to estimate
MSD for the proposed method, we use the bone boundary points before applying
the regression.
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Fig. 1. Illustration of bone boundary detection using the FEM phantom. (a) B-mode
image, (b) ideal strain image, (c) strain image S generated by the AM method, (d)
envelop power map Ê, (e) estimated bone boundary by the APS method, (f) estimated
bone boundary by the proposed method, (g) MAE analysis of the proposed and APS
methods at different SNRs, and (h) weight analysis at 10dB SNR (weight at minimum
error is shown with red arrow).

FEM Results. We provide comparative qualitative and quantitative results of
our proposed and APS method using the FEM data. In Figs. 1(a), (b), (c) and
(d), we show the B-mode, ideal strain, estimated strain S, and envelop power

Ê images, respectively. Note that we are dealing with anatomy that includes
bone, hence, the RF intensities fall sharply (compared to soft tissue) beneath
the bone surface. In such a situation, the regularization terms in the cost equa-
tion become larger than the signal part in the region beneath the bone surface
and over-smoothing tends to occur [5]. In Figs. 1(e) and (f), we show the bone
boundaries detected by the APS and proposed methods, respectively. The figures
demonstrate that the APS method produces several false positive bone responses
(indicated by white arrows) due to the presence of ridge-like features in the B-
mode image. In contrast, the bone boundary produced by our method (Fig.
1(f)) is apparently free of such artifacts. Note that if the false positive responses
produced by the APS method could be ignored, then a local fitting over the ac-
tual bone responses similar to the proposed method could produce better bone
boundary. We also compare the quantitative performance of the proposed and
APS methods in terms of MAE in Fig. 1(g) with four different signal-to-noise
ratio (SNR) simulations (40, 30, 20, and 10dB) with 100 realizations each. As
can be seen in this figure, up to 20dB SNR, the APS method produces greater
mean MAE than that of the proposed method, though the mean MAE of both
the methods are almost flat and standard deviations (SD) are close to zero. In
addition, the mean MAE of the APS method at 10dB SNR is higher though the
SD of the proposed method in this case somewhat higher. Moreover, the esti-
mated MSDs are found to be 0.68± 2.5mm and 5.47± 6.20mm for the proposed
and APS methods, respectively. Therefore, we can say that the proposed method
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shows better performance in terms of reduced false positive bone responses than
that of the APS method.
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Fig. 2. Illustration of the bone boundary detection using the experimental phantom.
(a) B-mode image, (b) a CT projection along which US scanning is performed, (c)
strain image S, (d) estimated bone boundary by the APS method, (e) estimated bone
boundary by the proposed method, and (f) MAE analysis of the proposed and APS
methods at different SNRs.

Experimental Phantom Results. Figure 2 demonstrates the qualitative and
quantitative performance comparison of the proposed and APS methods using
the experimental phantom. In Fig. 2(a), we show the B-mode image. Figure
2(b) shows the CT projection slice along which the US scanning is performed
and fiducials in Fig. 2(a) corresponds to fiducials in Fig. 2(b) (shown with yellow
arrows) in the same order. The estimated strain image is shown in Fig. 2(c). We
show the detected bone boundaries by the APS and proposed methods in Figs.
2(d) and (e), respectively. We can see from Fig. 2(d) that the bone boundary
image estimated by the APS method produces false positive responses in soft
tissue regions and fails to estimate bone boundary where US back-scatter re-
sponse is very weak (shown with white circles in Figs. 2(a) and (d)). In contrast,
the bone boundary estimated by the proposed method has no discontinuity as
well as produces no noticeable false positive response. We also show the quan-
titative performance of both the methods in Fig. 2(f). Here too, we use four
different SNRs (40, 30, 20, and 10dB) with 100 realizations for each of them
to analyze the MAE. Since the quality of the ultrasound machine-acquired RF
data is dependent on user-defined parameters, the signals may have different
signal to noise ratios in different situations. Therefore, we have used a range of
SNRs to evaluate the robustness of our proposed scheme. We can see from this
figure that the mean MAE values of the proposed method are lower than that
of the APS method at all SNRs though the SDs of the proposed method are
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slightly higher. In addition, the estimated MSDs are found to be 0.66± 0.64mm
and 1.51± 3.34mm for the proposed and APS methods, respectively. Therefore,
from here too, we can say that the proposed method shows better performance
in terms of reduced false positive bone responses than that of the APS method.
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Fig. 3. Illustration of the bone boundary detection using the in vivo data. (a), (f) and
(k) show the transducer face positions on each volunteer’s hand (with red rectangles),
(b), (g) and (l) are the B-mode images, (c), (h) and (m) are strain images S, (d), (i)
and (n) show the detected bone boundaries by the APS method, and (e), (j) and (o)
are the detected bone boundaries by the proposed method.

In Vivo Results. We compared the bone boundary detection performance of
our proposed and APS methods using the in vivo data. The transducer positions
on the anatomies as well as the B-mode images of volunteer-I, II and III are
shown in Figs. 3(a) and (b), (f) and (g), and (k) and (l), respectively. Note that
for volunteer-II, only half of the total scan-lines are considered for both methods
since almost half of the transducer face laterally was in the air. We can see from
Figs. 3(d), (i) and (n) that the APS method produced false positive response for
bone in the soft tissue interfaces (shown with white arrows). In addition, in Fig.
3(i), the APS method fails to show the bone boundary. In contrast, in all three
cases, the bone boundaries estimated by our proposed method better match the
shapes visible in the corresponding B-mode images. (see Figs. 3(e), (j) and (o)).
In addition, our method did not produce false positives at soft tissue interfaces.

5 Conclusions

We proposed a novel method for robust bone boundary localization based on
the fusion of strain imaging and envelope signal power detection. We combined
real-time strain imaging based on analytic minimization of regularized cost func-
tions with an envelope power map of the pre-compression RF frame. Our results
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demonstrated reduced bone localization error through better elastogram reso-
lution, adoption of envelope power map of higher dynamic range, addressing
the false positive bone response, and exploiting the smoothing feature of the
AM method to better delineate the bone boundary in strain image. We demon-
strated our improved performance on a wide range of validation data including
a simulated FEM phantom, a physical experimental phantom, and in vivo data
of the human with reported improvements of approximately 32% and 14% in
terms of MAE, and 87% and 56% in terms of MSD in the FEM and experimen-
tal phantom tests, respectively, when compared with current state-of-the-art.
We plan to follow up this promising initial study with a more extensive range
of clinical test cases to better identify situations in which our method does not
produce accurate results. We anticipate that it will be more problematic in situ-
ations where the bone boundary lies relatively far below the skin surface due to
signal dropout and inhomogeneous tissue deformation near the bone boundary.
However, preliminary indications are that the technique is quite robust when
the bone boundary lies close to the skin surface.
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