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ABSTRACT

This paper aimed to investigate the predictive power of combining demographic, socioeconomic, and genetic factors with a
brain MRI-based quantified measure of accelerated brain aging (referred to as deltaAGE) for neurocognitive outcomes in
adolescents and young adults with Congenital Heart Disease (CHD). Our hypothesis posited that including the brain age
biomarker (deltaAGE) would enhance neurocognitive outcome predictions compared to models excluding it. We conducted
comprehensive analyses, including leave-one-subject-out and leave-one-group-out cross-validation techniques. Our results
demonstrated that the inclusion of deltaAGE consistently improved prediction performance when considering the Pearson
correlation coefficient, a preferable metric for this study. Notably, the deltaAGE-augmented models consistently outperformed
those without deltaAGE across all cross-validation setups, and these correlations were statistically significant (p-value < 0.05).
Therefore, our hypothesis that incorporating the brain-age biomarker alongside demographic, socioeconomic, and genetic
factors enhances neurocognitive outcome predictions in adolescents and young adults with CHD is supported by the findings.

1 Introduction

Congenital heart disease (CHD) is the most common birth defect, occurring in 1% of live births1, 2, with an 85% survival rate into
adulthood3–7. As a result, in the USA alone, ∼30,000 infants with CHD survive per year with a normal life expectancy. However,
∼50% of survivors develop neurodevelopmental impairments that emerge in adolescence8–13 through young adulthood8, 14–17.
In fact, in the past 5 years studies have shown increasing concern17–19 for accelerated brain aging with increased risk of
dementia in adolescence and young adulthood (8-30 years)13, 20.

Predicting neurocognitive outcomes is an urgent unmet need. In the USA, more than 30,000 infants per year survive CHD
but half of them develop neurocognitive impairments in adulthood8–17. Intervention before adulthood may improve outcomes21,
by promoting parent-child relationships, individual psycho-education, outreach to community healthcare providers22, and
home-administered computerized training programs23, 24. However, the bottleneck problem is: how to identify CHD patients at
high risk for neurocognitive impairments. High-risk patients should be ideal candidates for interventions, while interventions
on low-risk patients should be avoided. Current work inferring adulthood neurocognitive outcomes are very few and mostly
used clinical variables or traditional brain MRI metrics, i.e., volumes14, 25. However, they explain only 1/3 of the neurocognitive
outcomes26–28, insufficient to support interventional clinical trials.

Early prediction of later-life neurocognitive outcomes will create a precious time window for early intervention29, 30. It
will identify high-risk patients for targeted intervention, avoiding unnecessary interventions for patients at low risk for future
neurocognitive impairment31. Both the early and the targeted interventions are key unmet needs in clinical trials that aim to
improve CHD patients’ long-term neurocognitive outcomes21, 30. Very few existing studies use brain magnetic resonance images
(MRIs), demographics, socioeconomic status (SES), or genetic factors to predict later-life neurocognitive outcomes32–38. In
this paper, we test our overall hypothesis that combining demographics, SES, or genetic factors, and adding a brain MRI-based
quantified severity of accelerated brain aging, can better predict neurocognitive outcomes than without the brain age biomarker.



2 Methods

2.1 Data
We accessed the brain MRI and the associated demographic, SES, and genetic data of 89 patients from the Pediatric Cardiac
Genomics Consortium (PCGC) database. The institutional review board of the Boston Children’s Hospital approved the
access to data (Approval numbers IRB P00039087 and P00023574). In Table 1, we present the collection site, demographic,
socioeconomic, genetic, and diagnosis details of this dataset. Further, in Table 2, we show the performed neurocognitive tests
on the patients in this dataset. In this study, we use different prediction models to predict only those scores, which are available
for all 89 subjects. We also used age, sex, diagnostic group, and data collection sites as independent variables and standardized
all the scores before training and validating our prediction models.

2.2 Neurocognitive Score Prediction
To test the hypothesis that combining brain MRI-based quantified severity of accelerated brain aging to demographics, SES, and
genetic factors can better predict neurocognitive scores than without the brain-age biomarker, we train and validate each of our
predictive models in leave-one-sample-out as well as leave-one-group-out cross-validation in two stages. In the first stage, we
use all features including the brain-age biomarker, and in the second stage, we use all features except the brain-age biomarker.

2.2.1 Estimation of Accelerated Brain Aging
In a recent study39, we trained a deep learning brain age estimator on T1-weighted brain MRIs of 16,705 healthy brain MRIs40

and produced the prediction of brain age for 96 adolescents and young adult survivors of CHD (accessed from the same PCGC
dataset as in this study; 8-30 years of age). We computed the severity of brain aging by subtracting deep model-estimated and
the actual chronological ages (deltaAGE; we refer to it as the MRI-based brain-age biomarker henceforth). Using a T-test with
normal controls, we confirmed the existence and severity of accelerated brain aging (i.e., deltaAGE > 0 with p-value < 0.05).

Figure 1. Prediction models in this study. (a) Regression forest that ensembles regression decisions from 100 regression trees,
each of depth five, and (b) 5-layer deep neural networks (DNNs) of two settings. The number of nodes in each hidden fully
connected layer is also shown for each DNN setting. DNN-2 is wider than DNN-1.

2.2.2 Prediction by Regression Forests
We used a regression forest that ensembles regression decisions from 5-layered (i.e., depth) 100 decision trees (see Fig. 1(a)).
As described earlier, in the first stage of leave-one-sample-out and leave-one-group-out cross-validation, we used deltaAGE
along with other features mentioned in Table 1 to predict neurocognitive scores mentioned in Table 2. Note that some of the
features or target scores are not available for many patients and that is why, we did not include those features and target scores
in the present study (see Tables 1 and 2). In the second stage of leave-one-sample-out and leave-one-group-out cross-validation,
we train the regression forests again from scratch using the same features as used in stage one, except deltaAGE, to predict
neurocognitive scores. Also note that in both stages, we train our regression forest from scratch for each of the neurocognitive
scores separately.
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Feature Type Features/Sites/Attributes Number of Subjects/
Range/Mean

Collection sites

Boston Children’s Hospital 45
Children’s Hospital of Philadelphia 17
Yale University 6
University of Utah 10
Icahn School of Medicine at Mount Sinai 4
Rochester Medical Center 5
University of California San Francisco 2
Total Subjects (N) 89

Demographics

Age at MRI (years) Range: 7.94–29.91
Mean: 15.93±6.41

Sex Male: 52 (58.5%)
Female: 37 (41.5%)

Height (cm) Range: 118–198
Mean: 152.44±18.91

Weight (kgs) Range: 21.3–141.7
Mean: 55.07±25.84

Body Mass Index (BMI) Range: 13.63–61.33
Mean: 22.60±7.86

Diagnosis & Treatment

CHD 46
Control 43
Single ventricle with arch obstruction 4
Single ventricle without arch obstruction 17
Bi-ventricle with arch obstruction 6
Bi-ventricle without arch obstruction 46
No cardiac surgery 12
A total of one cardiac surgery 25
A total of two cardiac surgery 16
A total of three cardiac surgery 24
A total of four cardiac surgery 11
A total of five cardiac surgery 1

Genetics

Presence of loss-of-function (LoF) variant in high brain expressed gene
Yes: 53
No: 33
N/A: 3

Presence of LoF variant in chromatin-modifying gene
Yes: 8
No: 78
N/A: 3

Presence of LoF variant in known neurodevelopmental disorder gene
Yes: 8
No: 78
N/A: 3

Presence of LoF variant in constrained gene
Yes: 34
No: 52
N/A: 3

Presence of ApoE*

e2/e2: 1
e2/e3: 6
e3/e3: 33
e3/e4: 13
e4/e4: 1
N/A: 35

Socioeconomics

Mother’s Education: Kindergarten–6th Grade 1
Mother’s Education: High School Graduate 8
Mother’s Education: Partial College, 2-Year Diploma, or Trade School 18
Mother’s Education: 3 or 4-Year College/University Graduate 34
Mother’s Education: Post Graduate Degree 25
Mother’s Education: Other 1
Father’s Education: Kindergarten–6th Grade 1
Father’s Education: High School Graduate 17
Father’s Education: Partial College, 2-Year Diploma, or Trade School 16
Father’s Education: 3 or 4-Year College/University Graduate 28
Father’s Education: Post Graduate Degree 24
Father’s Education: Other 1
Total Family Income: <$24,999 3
Total Family Income: $25,000–$49,999 7
Total Family Income: $50,000–$74,999 8
Total Family Income: $75,000–$99,999 9
Total Family Income: $100,000–$149,999 15
Total Family Income: >$150,000 23
Total Family Income: N/A 24

Table 1. Demographic, socioeconomic, genetic, diagnosis, treatment, and collection site details of the 89 patients used in this
study. (*Not used as a feature in the present study) 3/14



Test Name Number of Subjects

Word Reading 89
Sentence Comprehension 89
Spelling 89
Math Computation 89
Reading Composite 89
Block Design 89
Similarities 89
Digit Span 89
Matrix Reasoning 89
Vocabulary 89
Arithmetic* 43
Symbol Search 89
Visual Puzzle* 43
Information Extraction* 43
Coding 89
Verbal Comprehension Index 89
Perceptual Reasoning Index* 43
Working Memory Index* 43
Processing Speed Index 89
Full-Scale IQ 89
Fluid Reasoning Index* 46
Figure Weights* 46

Table 2. A list of neurocognitive tests associated with the PCGC data, and the number of patients with scores available per test.
(*Not used as a target score for prediction in the present study)

2.2.3 Prediction by DNNs
We also used two 5-layered DNNs of different widths (i.e., different numbers of nodes in the hidden layers) in leave-one-
sample-out and leave-one-group-out cross-validation setups. Like regression forests, in the first stage, we used deltaAGE
along with other features mentioned in Table 1 to train DNNs to predict neurocognitive scores mentioned in Table 2. In the
second stage, we train those DNNs again from scratch using the same features as used in stage one, except deltaAGE, to predict
neurocognitive scores. We used the mean absolute error loss function to train these DNNs defined as:

LMAE =
1
m

m

∑
i=1

|gi − pi|, (1)

where g and p are the ground truth and the predicted test scores, respectively, and m denotes the total number of training data in
a batch. We chose the Adam optimizer with a learning rate of 0.001 to train both DNNs. We also chose a batch size of 16. We
implemented our models in PyTorch version 1.6.0 and Python version 3.8.10. The training was performed on the E2 cluster of
Boston Children’s Hospital using an Intel E5-2650 v4 Broadwell 2.2 GHz processor, an Nvidia Titan RTX GPU with 24 GB of
VRAM, and 8 GB of RAM.

2.3 Metrics for Prediction Accuracy Evaluation
To evaluate the neurocognition prediction accuracy, we used the Pearson correlation coefficient (r), mean absolute error (MAE),
and mean absolute percentage error (MAPE) between the predicted and the ground-truth scores. The Pearson correlation
between paired datasets (G,P) : {(g1, p1),(g2, p2), ...,(gN , pN)} is mathematically defined as41:

rG,P =
∑

N
i=1(gi − ḡ)(pi − p̄)√

∑
N
i=1(gi − ḡ)2

√
∑

N
i=1(pi − p̄)2

, (2)

where ḡ and p̄ are the mean of all data points in the ground truth and predicted scores G and P, respectively, and N denotes the
total number of test data. In addition, the MAE metric is defined as:

MAE =
1
N

N

∑
i=1

|gi − pi|, (3)

where g and p are the ground truth and the predicted values, respectively, and N denotes the total number of test data.
Furthermore, the MAPE metric is defined as:

MAPE =
1
N

N

∑
i=1

|gi − pi|
gi

×100%, (4)
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Tests
Regression Forest DNN-1 DNN-2

w/ deltaAGE w/o deltaAGE w/ deltaAGE w/o deltaAGE w/ deltaAGE w/o deltaAGE
r p-value r p-value r p-value r p-value r p-value r p-value

Word Reading 0.11 0.3238 0.05 0.6476 -0.07 0.5448 0.02 0.8858 -0.06 0.5483 0.04 0.6900
Sentence Comprehension 0.13 0.2225 0.07 0.5294 0.10 0.3285 0.09 0.3847 0.09 0.3799 0.12 0.2797
Spelling -0.01 0.9589 -0.08 0.4765 0.00 0.9699 0.06 0.5534 0.01 0.9401 0.07 0.5286
Math Computation -0.04 0.7012 -0.07 0.5024 -0.13 0.2421 0.03 0.7642 -0.04 0.7166 -0.05 0.6198
Reading Composite 0.23 0.0293 0.07 0.5236 -0.06 0.5692 0.07 0.5373 0.01 0.9151 0.10 0.3634
Block Design 0.40 0.0001 0.36 0.0005 -0.13 0.2405 -0.07 0.5007 -0.14 0.1867 -0.06 0.6076
Similarities 0.24 0.0241 0.18 0.0864 0.00 0.9964 0.12 0.2815 0.10 0.3642 0.09 0.3783
Digit Span 0.19 0.0706 0.22 0.0376 0.06 0.5494 0.08 0.4619 0.02 0.8460 0.03 0.7696
Matrix Reasoning 0.24 0.0226 0.27 0.0108 0.08 0.4695 0.12 0.2522 0.13 0.2250 0.10 0.3301
Vocabulary 0.21 0.0441 0.23 0.0278 0.02 0.8598 0.02 0.8875 -0.06 0.5965 0.00 0.9833
Symbol Search 0.14 0.1910 0.10 0.3279 0.10 0.3325 0.18 0.0839 0.10 0.3650 0.16 0.1284
Coding 0.42 0.0001 0.38 0.0002 -0.07 0.4883 0.05 0.6659 -0.03 0.7915 0.08 0.4822
Verbal Comprehension Index 0.31 0.0029 0.32 0.0023 0.00 0.9995 0.14 0.1991 0.04 0.6829 0.09 0.4016
Processing Speed Index 0.36 0.0004 0.31 0.0035 -0.01 0.9404 0.11 0.3060 0.06 0.5783 0.09 0.4023
Full-scale IQ 0.37 0.0004 0.29 0.0052 0.04 0.7285 0.10 0.3489 0.01 0.8968 0.02 0.8295
Mean 0.22 0.18 0.00 0.07 0.02 0.06

Table 3. Pearson correlation performance between the ground truth and predicted neurocognitive scores by the regression
forest, DNN-1, and DNN-2 in leave-one-sample-out cross-validation. The best correlation value for full-scale IQ is shown in
blue font and the best mean correlation value is shown in bold font. Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

where g and p are the ground truth and the predicted values, respectively, and N denotes the total number of test data.

3 Results
In this section, we provide comparative neurocognitive score prediction performance by the regression forest, DNN-1, and
DNN-2 in terms of Pearson correlation, MAE, MAPE, and the Wilcoxon signed-rank in leave-on-sample-out and leave-one-
group-out cross-validation setup. Further, we used the data collection sites as well as the diagnosis, i.e., either CHD or control
cohort, as groups. We ultimately compared this performance using two feature sets, once with deltaAGE and again without
deltaAGE.

3.1 Leave-one-sample-out Performance
In Tables 3 and 4, we show the leave-one-subject-out cross-validated prediction performance by the regression forest, DNN-1,
and DNN-2. We show the Pearson correlation coefficient (r) between the actual and predicted neurocognitive test scores in
Table 3, where we present two sets of results by the regression forest, DNN-1, and DNN-2 for each neurocognitive test. For one
set, we combined the brain-age bio-marker (i.e., deltaAGE) with other features (shown in columns with header ‘w/ deltaAGE’ in
tables), while for another set we did not combine deltaAGE with other features (shown in columns with header ‘w/o deltaAGE’
in tables). We see in Table 3 that prediction performance by the regression forest is overall better than that by the DNN-1 and
DNN-2, and the correlation (r) is statistically significant (for p-value=0.05) for many tests. On the other hand, the correlation
between the actual scores and DNN-predicted scores is worse and not statistically significant (for p-value=0.05) for any test.
Therefore, relying more on regression forest-based prediction, we further see that the prediction performance is better in the
occasion when deltaAGE is combined with other features as confirmed by the higher mean of correlation coefficient (see first
column under regression forest in Table 3).

We also show the MAE and MAPE performance between the actual and predicted neurocognitive test scores for ‘with
deltaAGE’ and ‘without deltaAGE’ by the regression forest, DNN-1, and DNN-2 for each neurocognitive test in Table 4.
Further, we estimated the difference between the actual and predicted scores for ‘with deltaAGE’ and ‘without deltaAGE’ cases
followed by the Wilcoxon signed-rank test. The Wilcoxon signed-rank test produces a statistic value of 0 when two distributions
perfectly match to each other. Otherwise, the statistic value gets larger as the two distribution gets further away from each other.
We see in Table 4 that prediction performance in terms of the MAE and MAPE by the regression forest is overall better than
that by the DNN-1 and DNN-2 as depicted by the least mean of MAE and MAPE by the regression forest (see first and second
columns under regression forest in Table 4). Further, we see that the Wilcoxon signed-rank statistic value is large between
the ‘with deltaAGE’ and ‘without deltaAGE’ cases for regression forest, which infer that prediction performance for ‘with
deltaAGE’ is better than that for the ‘without deltaAGE’ case, although this statistic value of not statistically significant (for
p-value=0.05).
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Tests
Regression Forest DNN-1 DNN-2

w/ deltaAGE w/o deltaAGE w/ vs. w/o deltaAGE w/ deltaAGE w/o deltaAGE w/ vs. w/o deltaAGE w/ deltaAGE w/o deltaAGE w/ vs. w/o deltaAGE
MAE MAPE MAE MAPE W. Stat. p-value MAE MAPE MAE MAPE W. Stat. p-value MAE MAPE MAE MAPE W. Stat. p-value

Word Reading 10.64 0.10 11.07 0.11 1650.00 0.817 14.98 0.14 13.88 0.13 1881.00 0.493 16.15 0.16 15.27 0.15 1810.0 0.431
Sentence C 13.76 0.26 13.98 0.26 1732.00 0.170 17.54 0.29 15.96 0.28 1719.00 0.006 16.56 0.29 16.71 0.29 1639.0 0.137
Spelling 11.99 0.23 12.68 0.23 1952.00 0.859 15.62 0.26 15.34 0.26 1590.00 0.135 16.17 0.27 15.70 0.26 1873.0 0.596
Math Computation 13.70 0.15 13.66 0.15 1969.00 0.966 17.94 0.19 16.29 0.17 1917.00 0.255 16.48 0.17 17.24 0.18 1968.0 0.888
Reading Composite 10.55 0.10 11.24 0.11 1874.00 0.898 15.77 0.15 15.04 0.15 1855.00 0.305 15.57 0.15 15.38 0.15 1832.0 0.485
Block Design 2.15 0.27 2.19 0.28 1899.00 0.678 2.50 0.33 2.50 0.33 1683.00 0.000 2.62 0.35 2.53 0.34 1659.0 0.160
Similarities 2.60 0.32 2.68 0.32 1989.00 0.329 2.86 0.34 2.78 0.33 1903.00 0.443 2.88 0.34 2.84 0.34 1837.0 0.498
Digit Span 2.26 0.25 2.22 0.24 1685.00 0.979 2.46 0.27 2.40 0.26 1921.00 0.175 2.64 0.29 2.41 0.26 1807.0 0.424
Matrix Reasoning 2.07 0.22 2.10 0.22 1833.00 0.901 2.55 0.26 2.34 0.25 1819.00 0.274 2.43 0.26 2.45 0.26 1914.0 0.717
Vocabulary 2.23 0.23 2.25 0.23 1902.00 0.321 2.62 0.28 2.61 0.27 1927.00 0.002 2.61 0.28 2.70 0.28 1898.0 0.669
Symbol Search 2.02 0.24 2.07 0.24 1923.00 0.292 2.14 0.25 2.15 0.25 1940.00 0.158 2.24 0.26 2.19 0.25 1917.0 0.727
Coding 1.87 0.24 1.89 0.25 1698.00 0.436 2.38 0.32 2.40 0.31 1768.00 0.294 2.33 0.30 2.28 0.30 1304.0 0.004
Verbal CI 12.66 0.12 12.74 0.12 1919.00 0.705 16.81 0.16 16.30 0.16 1746.00 0.596 16.51 0.16 16.76 0.16 1682.0 0.190
Processing Speed I 9.33 0.10 9.52 0.10 1808.00 0.038 14.68 0.15 13.15 0.14 1548.00 0.128 14.61 0.15 13.85 0.14 1786.0 0.376
Full-scale IQ 10.95 0.11 10.92 0.11 1739.00 0.619 14.44 0.15 15.35 0.15 1535.00 0.363 15.26 0.16 16.35 0.16 1924.0 0.748
Mean 7.25 0.20 7.41 0.21 1838.13 9.69 0.24 9.23 0.23 1783.47 9.67 0.24 9.64 0.24 1790.0

Table 4. MAE and MAPE performance, and the Wilcoxon signed-rank test between the ground truth and predicted
neurocognitive scores by the regression forest, DNN-1, and DNN-2 in leave-on-sample-out cross-validation setup. The least
MAE and MAPE values are shown in bold font. Acronyms- w/: with, w/o: without, C: comprehension, I: index, IQ: intelligent
quotient, W. Stat.: Wilcoxon signed-rank statistic.

Tests
Regression Forest DNN-1 DNN-2

w/ deltaAGE w/o deltaAGE w/ deltaAGE w/o deltaAGE w/ deltaAGE w/o deltaAGE
r p-value r p-value r p-value r p-value r p-value r p-value

Word Reading 0.21 0.0443 0.20 0.0620 -0.01 0.9588 0.05 0.6438 -0.05 0.6201 0.03 0.7670
Sentence Comprehension 0.11 0.2938 0.08 0.4628 0.16 0.1251 0.17 0.1158 0.07 0.5308 0.18 0.0955
Spelling 0.09 0.3863 0.06 0.5571 0.07 0.5236 0.06 0.5687 0.02 0.8620 0.09 0.4011
Math Computation 0.06 0.5824 0.06 0.5932 -0.05 0.6567 0.03 0.7746 -0.04 0.6914 0.02 0.8644
Reading Composite 0.26 0.0131 0.13 0.2119 0.11 0.3167 0.10 0.3503 0.07 0.5152 0.07 0.5278
Block Design 0.17 0.1173 0.14 0.1940 -0.12 0.2742 -0.15 0.1749 -0.13 0.2308 -0.15 0.1648
Similarities 0.24 0.0217 0.17 0.1164 0.02 0.8399 0.08 0.4572 0.05 0.6707 0.12 0.2588
Digit Span 0.24 0.0223 0.25 0.0188 0.01 0.9176 0.11 0.3185 -0.02 0.8239 0.04 0.6906
Matrix Reasoning 0.13 0.2333 0.11 0.2955 0.00 0.9665 0.07 0.4925 0.13 0.2297 0.07 0.5042
Vocabulary 0.08 0.4376 0.13 0.2126 0.11 0.3214 0.01 0.9051 0.03 0.8105 0.07 0.5087
Symbol Search 0.07 0.4965 0.05 0.6492 0.06 0.5733 0.13 0.2258 0.04 0.7127 0.11 0.2856
Coding 0.13 0.2165 0.26 0.0125 -0.06 0.5650 -0.02 0.8391 -0.02 0.8580 0.05 0.6395
Verbal Comprehension Index 0.19 0.0745 0.21 0.0481 0.10 0.3532 0.07 0.5291 0.05 0.6147 0.11 0.3241
Processing Speed Index 0.15 0.1593 0.22 0.0394 0.08 0.4689 0.15 0.1657 0.07 0.5097 0.04 0.7197
Full-scale IQ 0.27 0.0096 0.25 0.0175 0.09 0.4235 0.08 0.4486 0.06 0.6005 0.09 0.3888
Mean 0.16 0.15 0.04 0.06 0.02 0.06

Table 5. Pearson correlation performance between the ground truth and predicted neurocognitive scores by the regression
forest, DNN-1, and DNN-2 in leave-one-group-out cross-validation. In this table, we use data collection sites as groups. The
best correlation value for full-scale IQ is shown in blue font and the best mean correlation value is shown in bold font.
Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

3.2 Leave-one-group-out Performance
We further tested the neurocognitive score prediction performance by the regression forest, DNN-1, and DNN-2 in leave-one-
group-out cross-validation. We considered two different attributes for two different group-based cross-validation. First, we
used data collection sites as groups, and second, diagnosis (i.e., CHD and control cohorts) as groups. In the following sections,
we present those findings.

3.2.1 Cohorts of Seven Data Collection Sites as Groups
In Tables 5 and 6, we show the leave-one-group-out cross-validated prediction performance by the regression forest, DNN-1,
and DNN-2 for ‘with deltaAGE’ and ‘without deltaAGE’ cases. We show the Pearson correlation coefficient (r) between the
actual and predicted neurocognitive test scores in Table 5, where see that prediction performance by the regression forest is
overall better than that by the DNN-1 and DNN-2, and the correlation (r) statistically significant (for p-value=0.05) for several
tests including ‘Full-scale IQ.’ On the other hand, the correlation between the actual scores and DNN-predicted scores is worse
and not statistically significant (for p-value=0.05) for any test. Furthermore, we see that the prediction performance by the
regression forest is better for the ‘with deltaAGE’ than the ‘without deltaAGE’ case (see first column under ‘Regression Forest’
in Table 5).

We further show the MAE and MAPE performance between the actual and predicted neurocognitive test scores for ‘with
deltaAGE’ and ‘without deltaAGE’ by the regression forest, DNN-1, and DNN-2 for each neurocognitive test in Table 6.
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Tests
Regression Forest DNN-1 DNN-2

w/ deltaAGE w/o deltaAGE w/ vs. w/o deltaAGE w/ deltaAGE w/o deltaAGE w/ vs. w/o deltaAGE w/ deltaAGE w/o deltaAGE w/ vs. w/o deltaAGE
MAE MAPE MAE MAPE W. Stat. p-value MAE MAPE MAE MAPE W. Stat. p-value MAE MAPE MAE MAPE W. Stat. p-value

Word Reading 10.31 0.10 10.83 0.10 1946.0 0.817 17.02 0.16 16.82 0.16 1835.00 0.493 17.02 0.16 17.22 0.16 1966.00 0.881
Sentence C 15.45 0.28 16.87 0.29 1667.0 0.170 20.53 0.31 18.48 0.30 1331.00 0.006 18.77 0.30 16.81 0.29 1132.00 0.000
Spelling 11.55 0.22 12.39 0.23 1959.0 0.859 18.00 0.28 17.76 0.28 1637.00 0.135 17.73 0.28 16.32 0.27 1461.00 0.027
Math Computation 13.42 0.14 13.34 0.14 1992.0 0.966 19.04 0.19 18.24 0.19 1724.00 0.255 18.98 0.19 17.63 0.18 1588.00 0.090
Reading Composite 10.44 0.10 11.01 0.11 1971.0 0.898 15.77 0.15 16.87 0.16 1752.00 0.305 16.27 0.16 16.10 0.16 1168.00 0.001
Block Design 2.32 0.32 2.34 0.32 1901.0 0.678 2.74 0.35 2.62 0.35 1058.00 0.000 2.64 0.35 2.60 0.34 1812.00 0.436
Similarities 2.67 0.33 2.76 0.34 1764.0 0.329 2.91 0.34 2.97 0.34 1815.00 0.443 2.97 0.35 3.00 0.34 1671.00 0.175
Digit Span 2.20 0.23 2.20 0.23 1996.0 0.979 2.69 0.28 2.53 0.26 1671.00 0.175 2.64 0.29 2.56 0.28 1866.00 0.577
Matrix Reasoning 2.23 0.24 2.25 0.24 1972.0 0.901 2.65 0.28 2.54 0.26 1735.00 0.274 2.48 0.26 2.61 0.26 788.00 0.000
Vocabulary 2.35 0.24 2.31 0.24 1760.0 0.321 2.68 0.27 2.82 0.29 1229.00 0.002 2.74 0.28 2.62 0.27 1680.00 0.187
Symbol Search 2.12 0.25 2.12 0.26 1745.0 0.292 2.29 0.26 2.20 0.26 1657.00 0.158 2.26 0.27 2.27 0.27 1813.00 0.438
Coding 2.03 0.29 1.96 0.28 1812.0 0.436 2.39 0.31 2.37 0.30 1746.00 0.294 2.37 0.31 2.25 0.29 1656.00 0.156
Verbal CI 13.60 0.13 13.64 0.13 1910.0 0.705 16.89 0.16 18.14 0.17 1873.00 0.596 18.58 0.18 17.31 0.16 1389.00 0.012
Processing Speed I 10.29 0.11 9.80 0.11 1495.0 0.038 15.06 0.15 14.29 0.15 1630.00 0.128 14.85 0.15 15.02 0.15 1958.00 0.856
Full-scale IQ 11.42 0.12 11.36 0.12 1881.0 0.619 16.29 0.16 16.11 0.16 1780.00 0.363 16.48 0.17 15.51 0.16 1745.00 0.292
Mean 7.49 0.20 7.68 0.21 1851.4 10.46 0.24 10.32 0.24 1631.53 10.45 0.25 9.99 0.24 1579.53

Table 6. MAE and MAPE performance, and the Wilcoxon signed-rank test between the ground truth and predicted
neurocognitive scores by the regression forest, DNN-1, and DNN-2 in leave-one-group-out cross-validation. In this table, we
use data collection sites as groups. The least MAE and MAPE values are shown in bold font. Acronyms- w/: with, w/o:
without, C: comprehension, I: index, IQ: intelligent quotient, W. Stat.: Wilcoxon signed-rank statistic.

We also estimated the difference between the actual and predicted scores for ‘with deltaAGE’ and ‘without deltaAGE’ cases
followed by the Wilcoxon signed-rank test. We see in Table 6 that prediction performance in terms of the MAE and MAPE by
the regression forest is overall better than that by the DNN-1 and DNN-2 as depicted by the least mean of MAE and MAPE by
the regression forest (see first and second columns under ‘Regression Forest’ in Table 6). Further, we see that the Wilcoxon
signed-rank statistic value is large between the ‘with deltaAGE’ and ‘without deltaAGE’ cases for regression forest, which infer
that prediction performance for ‘with deltaAGE’ is better than that for the ‘without deltaAGE’ case, although this statistic value
of not statistically significant (for p-value=0.05).

3.2.2 CHD and Control Cohorts as Groups
In Tables 7, 8, and 9, we show the leave-one-group-out cross-validated prediction performance in terms of Pearson correlation
coefficient (r) between the actual and predicted neurocognitive test scores by the regression forest, DNN-1, and DNN-2,
respectively, for ‘with deltaAGE’ and ‘without deltaAGE’ cases. In these tables, we used the CHD and control cohorts as
groups. We see in these tables that prediction performance by all the approaches (i.e., regression forest, DNN-1, and DNN-2)
are found to be better for ‘without deltaAGE’ case and when control cohort is used for training and CHD cohort for validation,
as depicted by the best mean r in respective tables of regression forests, DNN-1, and DNN-2 (see the second last columns under
‘LOGO (Training: Control, Test: CHD)’ in Tables 7, 8, and 9). In addition, the prediction performance in terms of r is found to
be the best for the DNN-2 approach (see Table 9), although we see correlation performance to be statistically significant (for
p-value=0.05) for fewer tests than we found for the regression forest in leave-one-sample-out cross-validations in Table 3, and
leave-one-group-out (where, data collection sites as group) cross-validations in Table 5.

We also show the MAE and MAPE performance between the actual and predicted neurocognitive test scores for ‘with
deltaAGE’ and ‘without deltaAGE’ by the regression forest, DNN-1, and DNN-2 for each neurocognitive test in Tables 10, 11,
and 12, respectively. We further estimated the difference between the actual and predicted scores for ‘with deltaAGE’ and
‘without deltaAGE’ cases followed by the Wilcoxon signed-rank test and showed the Wilcoxon statistic and associated p-value
in Tables 10, 11, and 12. We see in Table 6 that prediction performance in terms of the MAE and MAPE by the regression forest
is overall better for ‘without deltaAGE’ case and when the control cohort is used for training and CHD cohort for validation, as
depicted by the least mean MAE and mean MAPE. On the other hand, for DNN-1 and DNN-2, prediction performance in terms
of the MAE and MAPE is overall better (i.e., least MAE and MAPE) for ‘without deltaAGE’ case but when CHD cohort is
used for training and control cohort for validation (Tables 11 and 12). Thus, irrespective of the training and validation group, all
approaches, i.e., regression forest, DNN-1, and DNN-2, performed better in prediction for the ‘without deltaAGE’ case. This is
the opposite finding of what we found in the leave-one-subject-out and leave-one-group-out (the group being the data collection
site) cross-validation setup as seen in Tables 4 and 6. Further, we see that the Wilcoxon signed-rank statistic value is smaller (<
500) between the ‘with deltaAGE’ and ‘without deltaAGE’ cases for regression forest, DNN-1, and DNN-2, compared to those
(> 1500) for leave-one-subject-out and leave-one-group-out (group being data collection site) cross-validation setup as seen in
Tables 4 and 6. It infers that prediction distributions for ‘with deltaAGE’ and ‘without deltaAGE’ are closer to each other when
the leave-one-group-out setup uses CHD and control cohorts as groups.

3.3 Full-scale IQ Prediction Performance
Full-scale IQ is typically used to assess human general intelligence, the fundamental ability that combines all subdomains of
neurocognitive abilities42, 43. These subdomain abilities can be assessed via different neurocognitive tests, some of which are
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Tests
LOGO (Training: CHD, Test: Control) LOGO (Training: Control, Test: CHD)

w/ deltaAGE w/o deltaAGE w/ deltaAGE w/o deltaAGE
r p-value r p-value r p-value r p-value

Word Reading 0.08 0.6227 0.08 0.5932 -0.16 0.2998 0.10 0.5028
Sentence Comprehension -0.12 0.4583 -0.19 0.2103 0.06 0.6808 -0.06 0.7071
Spelling -0.10 0.5126 -0.17 0.2767 -0.07 0.6394 0.04 0.8081
Math Computation 0.10 0.5141 0.09 0.5571 0.08 0.6102 0.23 0.1301
Reading Composite -0.06 0.6936 0.02 0.9137 -0.06 0.6927 0.20 0.1752
Block Design 0.16 0.2959 0.14 0.3855 0.12 0.4149 0.17 0.2563
Similarities 0.10 0.5094 0.13 0.4121 0.11 0.4683 0.09 0.5423
Digit Span 0.10 0.5290 0.08 0.5973 0.17 0.2545 0.15 0.3171
Matrix Reasoning 0.19 0.2176 0.13 0.3957 0.11 0.4622 0.11 0.4869
Vocabulary -0.15 0.3426 -0.05 0.7593 0.07 0.6451 0.12 0.4315
Symbol Search 0.16 0.3121 0.09 0.5607 0.21 0.1533 0.17 0.2705
Coding 0.42 0.0051 0.38 0.0130 0.29 0.0515 0.38 0.0091
Verbal Comprehension Index 0.10 0.5424 0.08 0.5987 0.15 0.3232 0.16 0.2894
Processing Speed Index 0.32 0.0353 0.24 0.1200 0.36 0.0127 0.33 0.0240
Full-scale IQ 0.19 0.2129 0.04 0.7896 0.13 0.3974 0.17 0.2564
Mean 0.10 0.07 0.10 0.16

Table 7. Pearson correlation performance between the ground truth and predicted neurocognitive scores by the regression
forest in leave-one-group-out (LOGO) cross-validation. In this table, we used the CHD cohort for training and the control
cohort for validation, and vice versa. The best correlation value for full-scale IQ is shown in blue font and the best mean
correlation value is shown in bold font. Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

Tests
LOGO (Training: CHD, Test: Control) LOGO (Training: Control, Test: CHD)

w/ deltaAGE w/o deltaAGE w/ deltaAGE w/o deltaAGE
r p-value r p-value r p-value r p-value

Word Reading -0.29 0.0573 -0.24 0.1154 0.13 0.3866 0.18 0.2340
Sentence Comprehension -0.04 0.8117 -0.21 0.1854 0.33 0.0242 0.38 0.0083
Spelling -0.15 0.3381 -0.03 0.8720 0.14 0.3635 0.24 0.1114
Math Computation -0.32 0.0380 -0.24 0.1193 0.21 0.1619 0.19 0.2143
Reading Composite -0.26 0.0964 -0.18 0.2563 0.31 0.0380 0.32 0.0324
Block Design -0.39 0.0089 -0.28 0.0668 0.01 0.9335 0.09 0.5740
Similarities -0.28 0.0686 -0.03 0.8676 0.25 0.0889 0.22 0.1506
Digit Span -0.24 0.1208 -0.02 0.9088 0.06 0.7125 0.22 0.1428
Matrix Reasoning -0.11 0.4781 -0.16 0.3144 0.19 0.2068 0.20 0.1834
Vocabulary -0.10 0.5065 -0.20 0.2030 0.33 0.0272 0.29 0.0515
Symbol Search 0.03 0.8413 0.12 0.4400 0.12 0.4349 0.17 0.2722
Coding 0.00 0.9839 0.05 0.7366 0.17 0.2675 0.30 0.0441
Verbal Comprehension Index -0.10 0.5048 -0.01 0.9636 0.34 0.0215 0.27 0.0732
Processing Speed Index 0.10 0.5030 0.09 0.5566 0.06 0.7001 0.21 0.1530
Full-scale IQ -0.24 0.1143 -0.16 0.3120 0.31 0.0362 0.20 0.1750
Mean -0.16 -0.10 0.20 0.23

Table 8. Pearson correlation performance between the ground truth and predicted neurocognitive scores by the DNN-1 in
leave-one-group-out (LOGO) cross-validation. In this table, we used the CHD cohort for training and the control cohort for
validation, and vice versa. The best correlation value for full-scale IQ is shown in blue font and the best mean correlation value
is shown in bold font. Acronyms- w/: with, w/o: without, IQ: intelligent quotient.
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Tests
LOGO (Training: CHD, Test: Control) LOGO (Training: Control, Test: CHD)

w/ deltaAGE w/o deltaAGE w/ deltaAGE w/o deltaAGE
r p-value r p-value r p-value r p-value

Word Reading -0.37 0.0157 -0.18 0.2552 0.17 0.2665 0.18 0.2412
Sentence Comprehension -0.22 0.1607 -0.10 0.5189 0.36 0.0151 0.33 0.0267
Spelling -0.12 0.4310 0.04 0.7930 0.18 0.2306 0.16 0.2829
Math Computation -0.32 0.0370 -0.23 0.1343 0.14 0.3609 0.20 0.1909
Reading Composite -0.35 0.0202 -0.23 0.1405 0.35 0.0179 0.36 0.0138
Block Design -0.41 0.0058 -0.38 0.0109 -0.05 0.7590 0.09 0.5403
Similarities -0.21 0.1872 -0.12 0.4451 0.30 0.0426 0.23 0.1208
Digit Span -0.17 0.2739 -0.12 0.4308 0.17 0.2489 0.25 0.0942
Matrix Reasoning -0.17 0.2786 -0.03 0.8632 0.18 0.2443 0.27 0.0676
Vocabulary -0.22 0.1489 -0.15 0.3384 0.23 0.1206 0.36 0.0154
Symbol Search 0.03 0.8508 0.16 0.3207 0.07 0.6650 0.22 0.1506
Coding -0.09 0.5670 -0.06 0.7223 0.06 0.7106 0.16 0.2865
Verbal Comprehension Index -0.14 0.3653 -0.21 0.1752 0.28 0.0563 0.37 0.0122
Processing Speed Index 0.00 0.9937 0.03 0.8710 0.23 0.1320 0.22 0.1491
Full-scale IQ -0.23 0.1428 -0.11 0.4656 0.29 0.0475 0.27 0.0670
Mean -0.20 -0.11 0.20 0.24

Table 9. Pearson correlation performance between the ground truth and predicted neurocognitive scores by the DNN-2 in
leave-one-group-out (LOGO) cross-validation. In this table, we used the CHD cohort for training and the control cohort for
validation, and vice versa. The best correlation value for full-scale IQ is shown in blue font and the best mean correlation value
is shown in bold font. Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

Tests
LOGO (Training: CHD, Test: Control) LOGO (Training: Control, Test: CHD)

w/ deltaAGE w/o deltaAGE w/ vs. w/o deltaAGE w/ deltaAGE w/o deltaAGE w/ vs. w/o deltaAGE
MAE MAPE MAE MAPE W. Stat. p-value MAE MAPE MAE MAPE W. Stat. p-value

Word Reading 11.1711 0.1127 11.8116 0.1186 419.0 0.5220 11.8432 0.1071 11.1981 0.1012 354.0 0.0414
Sentence Comprehension 13.6002 0.2266 13.8749 0.2297 463.0 0.9096 13.6533 0.2972 13.5617 0.3061 501.0 0.6729
Spelling 14.0151 0.3776 14.5038 0.3811 407.0 0.4328 14.7320 0.1344 15.2182 0.1402 410.0 0.1569
Math Computation 13.9749 0.1402 13.9858 0.1421 257.0 0.0083 13.3565 0.1468 12.2133 0.1325 268.0 0.0024
Reading Composite 12.0509 0.1255 11.8614 0.1235 462.0 0.9001 11.2439 0.1022 10.3844 0.0935 337.0 0.0256
Block Design 2.1823 0.2384 2.2843 0.2507 331.0 0.0876 2.5841 0.3922 2.5206 0.3851 510.0 0.7454
Similarities 3.0422 0.4195 2.9494 0.4146 355.0 0.1574 2.7351 0.2650 2.8378 0.2721 421.0 0.1955
Digit Span 2.6753 0.3329 2.7397 0.3410 333.0 0.0923 2.5100 0.2262 2.5614 0.2295 458.0 0.3738
Matrix Reasoning 1.9443 0.2040 2.0412 0.2152 462.0 0.9001 2.5741 0.2655 2.5778 0.2655 450.0 0.3287
Vocabulary 2.7102 0.3222 2.6630 0.3161 411.0 0.4616 2.2484 0.1857 2.2284 0.1840 367.0 0.0583
Symbol Search 1.7971 0.2173 1.9004 0.2295 415.0 0.4913 2.2447 0.2619 2.2244 0.2536 310.0 0.0110
Coding 1.7037 0.2440 1.7452 0.2517 448.0 0.7696 2.1192 0.2674 2.1094 0.2558 233.0 0.0005
Verbal Comprehension Index 15.0922 0.1497 15.2359 0.1526 259.0 0.0090 13.6165 0.1274 13.2727 0.1239 293.0 0.0062
Processing Speed Index 8.6544 0.0922 9.1939 0.0983 459.0 0.8718 10.0753 0.1070 10.4144 0.1091 247.0 0.0010
Full-scale IQ 11.2125 0.1168 12.2658 0.1280 380.0 0.2670 12.6172 0.1262 12.2527 0.1210 244.0 0.0009
Mean 7.7217 0.2213 7.9370 0.2261 390.7 7.8769 0.2008 7.7050 0.1982 360.2

Table 10. MAE and MAPE performance, and the Wilcoxon signed-rank test between the ground truth and predicted
neurocognitive scores by the regression forest in leave-one-group-out (LOGO) cross-validation. In this table, we used the CHD
cohort for training and the control cohort for validation, and vice versa. The least MAE and MAPE values are shown in bold
font. Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

Tests
LOGO (Training: CHD, Test: Control) LOGO (Training: Control, Test: CHD)

w/ deltaAGE w/o deltaAGE w/ vs. w/o deltaAGE w/ deltaAGE w/o deltaAGE w/ vs. w/o deltaAGE
MAE MAPE MAE MAPE W. Stat. p-value MAE MAPE MAE MAPE W. Stat. p-value

Word Reading 13.9479 0.1299 14.7447 0.1347 395.0 0.3530 19.8863 0.1907 18.7606 0.1797 529.0 0.9053
Sentence Comprehension 19.0063 0.1795 15.6457 0.1470 264.0 0.0108 21.9458 0.4388 21.1289 0.4355 418.0 0.1843
Spelling 17.0929 0.1586 15.7440 0.1441 412.0 0.4689 18.8546 0.4009 19.6379 0.4144 415.0 0.1737
Math Computation 15.0337 0.1464 15.7065 0.1560 322.0 0.0689 22.7792 0.2396 20.6095 0.2153 518.0 0.8118
Reading Composite 14.5614 0.1369 14.4271 0.1355 385.0 0.2939 16.8978 0.1619 19.1627 0.1885 342.0 0.0296
Block Design 2.3164 0.3265 2.2749 0.3428 191.0 0.0004 3.1320 0.3744 2.9371 0.3629 359.0 0.0473
Similarities 2.4924 0.2961 2.6091 0.3108 280.0 0.0190 3.2987 0.3808 3.3002 0.3692 462.0 0.3976
Digit Span 2.4252 0.2376 2.5185 0.2484 460.0 0.8813 2.9390 0.3227 2.5361 0.2699 364.0 0.0539
Matrix Reasoning 2.5280 0.2933 2.4866 0.2791 280.0 0.0190 2.7586 0.2583 2.5969 0.2406 474.0 0.4745
Vocabulary 2.3692 0.2398 2.2670 0.2370 337.0 0.1022 2.9678 0.2932 3.3282 0.3368 282.0 0.0041
Symbol Search 2.2018 0.2822 2.0124 0.2633 348.0 0.1338 2.3634 0.2436 2.3672 0.2496 514.0 0.7784
Coding 2.3310 0.3850 2.0173 0.3417 467.0 0.9476 2.4497 0.2447 2.7041 0.2659 360.0 0.0486
Verbal Comprehension Index 13.7220 0.1329 14.1592 0.1370 426.0 0.5780 19.8477 0.1864 21.8574 0.2051 522.0 0.8456
Processing Speed Index 14.8407 0.1588 11.8377 0.1289 333.0 0.0923 15.2727 0.1478 16.5728 0.1609 530.0 0.9138
Full-scale IQ 13.7428 0.1417 12.5480 0.1307 382.0 0.2776 18.6767 0.1821 19.4363 0.1871 511.0 0.7536
Mean 9.2407 0.2163 8.7332 0.2091 352.1 11.6046 0.2710 11.7957 0.2720 440

Table 11. MAE and MAPE performance, and the Wilcoxon signed-rank test between the ground truth and predicted
neurocognitive scores by the DNN-1 in leave-one-group-out (LOGO) cross-validation. In this table, we used the CHD cohort
for training and the control cohort for validation, and vice versa. The least MAE and MAPE values are shown in bold font.
Acronyms- w/: with, w/o: without, IQ: intelligent quotient.
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Tests
LOGO (Training: CHD, Test: Control) LOGO (Training: Control, Test: CHD)

w/ deltaAGE w/o deltaAGE w/ vs. w/o deltaAGE w/ deltaAGE w/o deltaAGE w/ vs. w/o deltaAGE
MAE MAPE MAE MAPE W. Stat. p-value MAE MAPE MAE MAPE W. Stat. p-value

Word Reading 13.2943 0.1231 15.1261 0.1409 356.0 0.1610 20.5105 0.1965 19.1704 0.1840 424.0 0.2071
Sentence Comprehension 14.7697 0.1376 13.2474 0.1248 208.0 0.0010 22.5004 0.4599 20.1314 0.4411 365.0 0.0553
Spelling 16.2302 0.1512 13.3411 0.1229 266.0 0.0116 19.1321 0.4002 19.1003 0.4036 491.0 0.5957
Math Computation 14.8633 0.1455 13.9531 0.1388 301.0 0.0375 22.8232 0.2406 21.0758 0.2228 506.0 0.7129
Reading Composite 13.3242 0.1248 12.6260 0.1216 306.0 0.0436 19.0143 0.1840 19.3446 0.1889 286.0 0.0048
Block Design 2.2457 0.3266 2.2006 0.3233 467.0 0.9476 3.0129 0.3664 2.9769 0.3611 450.0 0.3287
Similarities 2.6116 0.3217 2.5551 0.3027 323.0 0.0708 3.3059 0.3760 3.4086 0.3775 479.0 0.5087
Digit Span 2.3792 0.2412 2.2749 0.2365 459.0 0.8718 2.8777 0.3269 2.8348 0.3148 448.0 0.3180
Matrix Reasoning 2.2831 0.2748 2.4360 0.2722 53.0 0.0001 2.6618 0.2469 2.7815 0.2549 389.0 0.0993
Vocabulary 2.2523 0.2464 1.9998 0.2089 216.0 0.0015 3.1952 0.3168 3.2069 0.3203 474.0 0.4745
Symbol Search 2.1770 0.2891 1.9019 0.2501 471.0 0.9857 2.3401 0.2507 2.6100 0.2811 454.0 0.3508
Coding 2.1010 0.3673 2.0252 0.3511 468.0 0.9571 2.6123 0.2645 2.4581 0.2421 353.0 0.0402
Verbal Comprehension Index 15.2878 0.1494 12.1968 0.1191 338.0 0.1048 21.6491 0.2015 22.0946 0.2043 365.0 0.0553
Processing Speed Index 12.6538 0.1390 12.6416 0.1365 418.0 0.5143 16.9028 0.1662 17.2474 0.1707 441.0 0.2823
Full-scale IQ 14.0394 0.1445 12.4544 0.1299 433.0 0.6367 18.7664 0.1842 18.3644 0.1814 462.0 0.3976
Mean 8.7008 0.2121 8.0653 0.1986 338.8 12.0869 0.2787 11.7870 0.2765 425.8

Table 12. MAE and MAPE performance, and the Wilcoxon signed-rank test between the ground truth and predicted
neurocognitive scores by the DNN-2 in leave-one-group-out (LOGO) cross-validation. In this table, we used the CHD cohort
for training and the control cohort for validation, and vice versa. The least MAE and MAPE values are shown in bold font.
Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

available with the PCGC dataset we used in this study (see Table 2). However, the full-scale IQ provides an overall quantification
of a person’s general intelligence. Furthermore, full-scale IQ is not calculated by typical averaging of all subdomain scores, but
rather by employing factor load analysis, resulting in heterogenous subdomain contributions to full-scale IQ42. Therefore, we
also check the effect of brain-age bio-marker in the prediction of the full-scale IQ in this study. In Fig. 2, we show plots of the
best predicted full-scale IQ scores in each of the three cross-validation setups. We observe in all three cross-validation setups
in Figs. 2(a-c) that the prediction models performed better with statistical significance (p-value=0.05) when the feature set
included deltaAGE, although overall performance in terms of mean correlation over all the test sometimes differed as seen
Tables 7, 8, and 9.

Figure 2. Best ‘Full-scale IQ’ score prediction performance in terms of Pearson correlation in three cross-validation setups.
Best prediction (a) by the regression forest in the leave-one-sample-out cross-validation, (b) by the regression forest in
leave-one-group-out cross-validation, where a group is the data collection site, and (c) by the DNN-1 in leave-one-group-out
cross-validation, where a group being either CHD or control cohort.

4 Discussion
In this study, we conducted experiments to quantify the effect of brain-age bio-marker in predicting neurocognitive scores in
adolescents and young adults with CHD. To perform this test, we employed regression forest and two DNNs on demographic,
socioeconomic, and genetic factors. Our findings demonstrate the potential of leveraging MRI-based brain-age bio-marker
for predicting neurocognition in patients with CHD. However, this investigation also presented us with several unanswered
questions. For example, the size of the training data remains a concern when using deep neural network frameworks, as
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Figure 3. Ditribution of the ground truth scores of different neurocognitive tests.

discussed by Richter et al.44. We had only 89 data samples in this study, which may not be sufficient to draw definitive
conclusions. Despite these lingering questions, our study reveals that brain-age bio-marker can aid in predicting neurocognitive
scores. Several key points arising from our findings warrant further discussion:

4.1 Pearson correlation vs. MAE
The Pearson correlation coefficient (r) seems more reliable than the MAE and MAPE metrics in neurocognition prediction
accuracy estimation. The distribution of neurocognitive scores in our dataset follows a Gaussian-like distribution (see Fig. 3).
As a result, a central tendency of the predicted scores towards the mean results in a low MAE and MAPE, although predictions
were often inaccurate. Therefore, we considered r as a better indicator of the accuracy of the predicted IQ scores. In addition,
the associated p value indicates the statistical significance of the estimated correlation.

4.2 Comparison to Structural MRI-based State-of-the-arts on Smaller Data
Several studies45–47 predicted the full-scale IQ score, which showed a correlation of 30-70% (p < 0.01) between the ground
truth and estimated absolute full-scale IQ scores. These studies used a dataset of size less than 250 healthy subjects with an age
distribution of 6–27 years. Our dataset consists of 89 patients with an age distribution of 7–30 years, and we achieved the best
correlation between the actual and predicted full-scale IQ of 37% (see Table 3 and Fig. 2(a)) but without using structural MRI
directly, rather employing demographic, socioeconomic, and genetic factors.

4.3 Test of Hypothesis
In this paper, we tested the hypothesis that combining demographics, socioeconomic, or genetic factors, and adding a brain
MRI-based quantified severity of accelerated brain aging, can better predict neurocognitive outcomes than without the brain
age biomarker. In our results, we observed that the mean correlation coefficient is better for the ‘with deltaAGE’ case than the
‘without deltaAGE’ in the leave-one-subject-out and the leave-one-group-out (where the group is the data collection site) as
seen in Tables 3 and 5. However, in the leave-one-group-out (where the group is the CHD/control cohort) setup, the mean
correlation coefficient is better for the ‘without deltaAGE’ case than the ‘with deltaAGE’ (see Tables 7, 8, and 9). Since,

1. The Pearson correlation is preferable to the MAE and MAPE metrics in this study (discussed earlier),

2. The size of the training data remains a concern when using DNN frameworks (discussed earlier),

3. Leave-one-group-out cross-validation with considering CHD/control cohorts as groups forced us to keep out about 50%
of the data for validation, resulting in the smallest data size for training among our three cross-validation setup, and

4. Full-scale IQ is not calculated by typical averaging of all subdomain scores, but rather by employing factor load analysis,
resulting in heterogenous subdomain contributions to full-scale IQ (discussed earlier),
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We can consider Pearson correlation performance on full-scale IQ prediction by the leave-one-subject-out and the leave-one-
group-out (where the group is the data collection site) more trustworthy than the overall mean correlation. Based on this
consideration, we see in Fig. 2 that the Pearson correlation (r) for full-scale IQ prediction is better for ‘with deltaAGE’ than the
‘without deltaAGE’ in all three cross-validation setups. In addition, all the correlations between the ground truth and predicted
full-scale IQ corresponding to ‘with deltaAGE’ cases are statistically significant (p-value < 0.05). Thus, our hypothesis that
adding brain-age bio-marker to demographic, socioeconomic, and genetic factors in predicting neurocognition in adolescents
and young adults with CHD stands true.

4.4 Limitations
While our paper presents valuable findings, it is important to acknowledge several limitations. Firstly, our study employed a
relatively small sample size of only 89 patients. Increasing the sample size would enhance the statistical power and broaden the
generalizability of our results. Secondly, by amalgamating data from both control and CHD groups, we may have introduced
confounding variables, thereby restricting our ability to make specific conclusions about each group. Future investigations
should contemplate analyzing these groups separately to gain a more precise understanding of the distinct contributions of brain
structure to intelligence within each population. Furthermore, our analysis exclusively relied on a single dataset, potentially
limiting the applicability of our findings to other populations or imaging protocols. To ensure the robustness of our results, it
would be beneficial to validate them using multiple independent datasets. In addition, our study exclusively employed regression
forest and DNN architectures and did not explore the potential advantages of utilizing alternative models such as support
vector regressors or Vision Transformers (ViTs). Assessing various learning approaches could yield valuable insights and
potentially enhance predictive performance. Lastly, our study concentrated solely on demographic, socioeconomic, genetic, and
MRI-based brain-age biomarkers, omitting actual MRI features that could contribute to a more comprehensive understanding of
the relationship between brain structure and intelligence. Future research should consider integrating these additional data
sources to offer a more holistic perspective on intelligence prediction.

Conclusion
In conclusion, this study provided valuable insights into the prediction of neurocognitive outcomes in CHD patients. Our
results highlighted the utility of including a brain MRI-based bio-marker, deltaAGE, in predictive models, showing consistent
improvements in prediction performance. However, it is essential to acknowledge several limitations, such as the relatively small
sample size and the amalgamation of data from both control and CHD groups, potentially introducing confounding variables.
Future research should address these limitations by increasing sample sizes, analyzing groups separately, and validating findings
with multiple independent datasets. Moreover, exploring alternative machine learning models could offer further improvements
in predictive accuracy. Additionally, integrating actual MRI features into the analysis could provide a more comprehensive
understanding of the relationship between brain structure and intelligence. Overall, this study contributes to our understanding
of neurocognitive prediction in CHD patients and paves the way for further research in this field.
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