Enhancing Neurocognitive Outcome Prediction in Congenital Heart Disease Patients: The Role of Brain Age Biomarkers and Beyond

Mohammad Arafat Hussain¹, Ellen Grant^{1,2}, and Yangming Ou^{1,2,3,*}

¹Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Boston, MA 02115, USA

²Department of Radiology, Harvard Medical School, 401 Park Drive, Boston, MA 02115, USA

³Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Boston, MA 02115, USA

*yangming.ou@childrens.harvard.edu

ABSTRACT

This paper aimed to investigate the predictive power of combining demographic, socioeconomic, and genetic factors with a brain MRI-based quantified measure of accelerated brain aging (referred to as *deltaAGE*) for neurocognitive outcomes in adolescents and young adults with Congenital Heart Disease (CHD). Our hypothesis posited that including the brain age biomarker (*deltaAGE*) would enhance neurocognitive outcome predictions compared to models excluding it. We conducted comprehensive analyses, including leave-one-subject-out and leave-one-group-out cross-validation techniques. Our results demonstrated that the inclusion of *deltaAGE* consistently improved prediction performance when considering the Pearson correlation coefficient, a preferable metric for this study. Notably, the *deltaAGE*-augmented models consistently outperformed those without *deltaAGE* across all cross-validation setups, and these correlations were statistically significant (*p*-value < 0.05). Therefore, our hypothesis that incorporating the brain-age biomarker alongside demographic, socioeconomic, and genetic factors in adolescents and young adults with CHD is supported by the findings.

1 Introduction

Congenital heart disease (CHD) is the most common birth defect, occurring in 1% of live births^{1,2}, with an 85% survival rate into adulthood^{3–7}. As a result, in the USA alone, ~30,000 infants with CHD survive per year with a normal life expectancy. However, ~50% of survivors develop neurodevelopmental impairments that emerge in adolescence^{8–13} through young adulthood^{8, 14–17}. In fact, in the past 5 years studies have shown increasing concern^{17–19} for accelerated brain aging with increased risk of dementia in adolescence and young adulthood (8-30 years)^{13,20}.

Predicting neurocognitive outcomes is an urgent unmet need. In the USA, more than 30,000 infants per year survive CHD but half of them develop neurocognitive impairments in adulthood^{8–17}. Intervention before adulthood may improve outcomes²¹, by promoting parent-child relationships, individual psycho-education, outreach to community healthcare providers²², and home-administered computerized training programs^{23,24}. However, the bottleneck problem is: how to identify CHD patients at high risk for neurocognitive impairments. High-risk patients should be ideal candidates for interventions, while interventions on low-risk patients should be avoided. Current work inferring adulthood neurocognitive outcomes are very few and mostly used clinical variables or traditional brain MRI metrics, i.e., volumes^{14,25}. However, they explain only 1/3 of the neurocognitive outcomes^{26–28}, insufficient to support interventional clinical trials.

Early prediction of later-life neurocognitive outcomes will create a precious time window for early intervention^{29,30}. It will identify high-risk patients for targeted intervention, avoiding unnecessary interventions for patients at low risk for future neurocognitive impairment³¹. Both the early and the targeted interventions are key unmet needs in clinical trials that aim to improve CHD patients' long-term neurocognitive outcomes^{21,30}. Very few existing studies use brain magnetic resonance images (MRIs), demographics, socioeconomic status (SES), or genetic factors to predict later-life neurocognitive outcomes^{32–38}. In this paper, we test our overall hypothesis that combining demographics, SES, or genetic factors, and adding a brain MRI-based quantified severity of accelerated brain aging, can better predict neurocognitive outcomes than without the brain age biomarker.

2 Methods

2.1 Data

We accessed the brain MRI and the associated demographic, SES, and genetic data of 89 patients from the Pediatric Cardiac Genomics Consortium (PCGC) database. The institutional review board of the Boston Children's Hospital approved the access to data (Approval numbers IRB P00039087 and P00023574). In Table 1, we present the collection site, demographic, socioeconomic, genetic, and diagnosis details of this dataset. Further, in Table 2, we show the performed neurocognitive tests on the patients in this dataset. In this study, we use different prediction models to predict only those scores, which are available for all 89 subjects. We also used age, sex, diagnostic group, and data collection sites as independent variables and standardized all the scores before training and validating our prediction models.

2.2 Neurocognitive Score Prediction

To test the hypothesis that combining brain MRI-based quantified severity of accelerated brain aging to demographics, SES, and genetic factors can better predict neurocognitive scores than without the brain-age biomarker, we train and validate each of our predictive models in leave-one-sample-out as well as leave-one-group-out cross-validation in two stages. In the first stage, we use all features including the brain-age biomarker, and in the second stage, we use all features except the brain-age biomarker.

2.2.1 Estimation of Accelerated Brain Aging

In a recent study³⁹, we trained a deep learning brain age estimator on T1-weighted brain MRIs of 16,705 healthy brain MRIs⁴⁰ and produced the prediction of brain age for 96 adolescents and young adult survivors of CHD (accessed from the same PCGC dataset as in this study; 8-30 years of age). We computed the severity of brain aging by subtracting deep model-estimated and the actual chronological ages (*deltaAGE*; we refer to it as the MRI-based brain-age biomarker henceforth). Using a T-test with normal controls, we confirmed the existence and severity of accelerated brain aging (i.e., *deltaAGE* > 0 with *p*-value < 0.05).

Figure 1. Prediction models in this study. (a) Regression forest that ensembles regression decisions from 100 regression trees, each of depth five, and (b) 5-layer deep neural networks (DNNs) of two settings. The number of nodes in each hidden fully connected layer is also shown for each DNN setting. DNN-2 is wider than DNN-1.

2.2.2 Prediction by Regression Forests

We used a regression forest that ensembles regression decisions from 5-layered (i.e., depth) 100 decision trees (see Fig. 1(a)). As described earlier, in the first stage of leave-one-sample-out and leave-one-group-out cross-validation, we used *deltaAGE* along with other features mentioned in Table 1 to predict neurocognitive scores mentioned in Table 2. Note that some of the features or target scores are not available for many patients and that is why, we did not include those features and target scores in the present study (see Tables 1 and 2). In the second stage of leave-one-sample-out and leave-one-group-out cross-validation, we train the regression forests again from scratch using the same features as used in stage one, except *deltaAGE*, to predict neurocognitive scores. Also note that in both stages, we train our regression forest from scratch for each of the neurocognitive scores separately.

Feature Type	Features/Sites/Attributes	Number of Subjects/ Range/Mean
	Boston Children's Hospital	45
	Children's Hospital of Philadelphia	17
	Yale University	6
Collection sites	University of Utah	10
	Icahn School of Medicine at Mount Sinai	4
	Kochester Medical Center University of California San Francisco	
	Total Subjects (N)	89
		Range: 7.94–29.91
	Age at MRI (years)	Mean: 15.93±6.41
	Sex	Male: 52 (58.5%) Female: 37 (41.5%)
Demographics	Height (cm)	Range: 118–198 Mean: 152.44±18.91
	Weight (kgs)	Range: 21.3–141.7 Mean: 55.07±25.84
	Body Mass Index (BMI)	Range: 13.63–61.33 Mean: 22.60±7.86
	CHD	46
	Control Single ventricle with arch obstruction	45
	Single ventricle without arch obstruction	17
	Bi-ventricle with arch obstruction	6
Diagnosia & Treatmont	Bi-ventricle without arch obstruction	46
Diagnosis & Treatment	No cardiac surgery	12
	A total of <u>one</u> cardiac surgery	25
	A total of <u>two</u> cardiac surgery	16
	A total of three cardiac surgery	24
	A total of five cardiac surgery	1
		Yes: 53
	Presence of loss-of-function (LoF) variant in high brain expressed gene	No: 33
		N/A: 3
		Yes: 8
	Presence of LoF variant in chromatin-modifying gene	No: 78
		N/A: 3
	Presence of LoF variant in known neurodevelopmental disorder gene	No: 78
		N/A: 3
Genetics		Yes: 34
	Presence of LoF variant in constrained gene	No: 52
		N/A: 3
		e2/e2: 1
		e2/e3: 0
	Presence of ApoE*	e3/e4: 13
		e4/e4: 1
		N/A: 35
	Mother's Education: Kindergarten-6th Grade	1
	Mother's Education: High School Graduate	8
	Mother's Education: Partial College, 2-Year Diploma, or Trade School Mother's Education: 2 or 4 Year College/University Craduate	18
	Mother's Education: 5 of 4- Year College/University Graduate	25
	Mother's Education: Other	1
	Father's Education: Kindergarten–6th Grade	1
	Father's Education: High School Graduate	17
	Father's Education: Partial College, 2-Year Diploma, or Trade School	16
Socioeconomics	Father's Education: 3 or 4-Year College/University Graduate	28
	Father's Education: Post Graduate Degree	24
	Total Family Income: <\$24,000	
	Total Family Income: \$25,000-\$49 999	7
	Total Family Income: \$50,000–\$74,999	8
	Total Family Income: \$75,000-\$99,999	9
	Total Family Income: \$100,000-\$149,999	15
	Total Family Income: >\$150,000	23
	Total Family Income: N/A	24

Table 1. Demographic, socioeconomic, genetic, diagnosis, treatment, and collection site details of the 89 patients used in thisstudy. (*Not used as a feature in the present study)3/14

Test Name	Number of Subjects
Word Reading	89
Sentence Comprehension	89
Spelling	89
Math Computation	89
Reading Composite	89
Block Design	89
Similarities	89
Digit Span	89
Matrix Reasoning	89
Vocabulary	89
Arithmetic*	43
Symbol Search	89
Visual Puzzle*	43
Information Extraction*	43
Coding	89
Verbal Comprehension Index	89
Perceptual Reasoning Index*	43
Working Memory Index*	43
Processing Speed Index	89
Full-Scale IQ	89
Fluid Reasoning Index*	46
Figure Weights*	46

Table 2. A list of neurocognitive tests associated with the PCGC data, and the number of patients with scores available per test. (*Not used as a target score for prediction in the present study)

2.2.3 Prediction by DNNs

We also used two 5-layered DNNs of different widths (i.e., different numbers of nodes in the hidden layers) in leave-onesample-out and leave-one-group-out cross-validation setups. Like regression forests, in the first stage, we used *deltaAGE* along with other features mentioned in Table 1 to train DNNs to predict neurocognitive scores mentioned in Table 2. In the second stage, we train those DNNs again from scratch using the same features as used in stage one, except *deltaAGE*, to predict neurocognitive scores. We used the mean absolute error loss function to train these DNNs defined as:

$$\mathscr{L}_{MAE} = \frac{1}{m} \sum_{i=1}^{m} |g_i - p_i|, \tag{1}$$

where g and p are the ground truth and the predicted test scores, respectively, and m denotes the total number of training data in a batch. We chose the Adam optimizer with a learning rate of 0.001 to train both DNNs. We also chose a batch size of 16. We implemented our models in PyTorch version 1.6.0 and Python version 3.8.10. The training was performed on the E2 cluster of Boston Children's Hospital using an Intel E5-2650 v4 Broadwell 2.2 GHz processor, an Nvidia Titan RTX GPU with 24 GB of VRAM, and 8 GB of RAM.

2.3 Metrics for Prediction Accuracy Evaluation

To evaluate the neurocognition prediction accuracy, we used the Pearson correlation coefficient (*r*), mean absolute error (MAE), and mean absolute percentage error (MAPE) between the predicted and the ground-truth scores. The Pearson correlation between paired datasets (G, P) : { $(g_1, p_1), (g_2, p_2), ..., (g_N, p_N)$ } is mathematically defined as⁴¹:

$$r_{G,P} = \frac{\sum_{i=1}^{N} (g_i - \bar{g})(p_i - \bar{p})}{\sqrt{\sum_{i=1}^{N} (g_i - \bar{g})^2} \sqrt{\sum_{i=1}^{N} (p_i - \bar{p})^2}},$$
(2)

where \bar{g} and \bar{p} are the mean of all data points in the ground truth and predicted scores G and P, respectively, and N denotes the total number of test data. In addition, the MAE metric is defined as:

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |g_i - p_i|,$$
(3)

where g and p are the ground truth and the predicted values, respectively, and N denotes the total number of test data. Furthermore, the MAPE metric is defined as:

$$MAPE = \frac{1}{N} \sum_{i=1}^{N} \frac{|g_i - p_i|}{g_i} \times 100\%,$$
(4)

		Regressi	on Forest			DN	N-1			DN	N-2	
Tests	w/ de	eltaAGE	w/o d	eltaAGE	w/ de	eltaAGE	w/o <i>d</i>	eltaAGE	w/ de	eltaAGE	w/o <i>d</i>	eltaAGE
	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value
Word Reading	0.11	0.3238	0.05	0.6476	-0.07	0.5448	0.02	0.8858	-0.06	0.5483	0.04	0.6900
Sentence Comprehension	0.13	0.2225	0.07	0.5294	0.10	0.3285	0.09	0.3847	0.09	0.3799	0.12	0.2797
Spelling	-0.01	0.9589	-0.08	0.4765	0.00	0.9699	0.06	0.5534	0.01	0.9401	0.07	0.5286
Math Computation	-0.04	0.7012	-0.07	0.5024	-0.13	0.2421	0.03	0.7642	-0.04	0.7166	-0.05	0.6198
Reading Composite	0.23	0.0293	0.07	0.5236	-0.06	0.5692	0.07	0.5373	0.01	0.9151	0.10	0.3634
Block Design	0.40	0.0001	0.36	0.0005	-0.13	0.2405	-0.07	0.5007	-0.14	0.1867	-0.06	0.6076
Similarities	0.24	0.0241	0.18	0.0864	0.00	0.9964	0.12	0.2815	0.10	0.3642	0.09	0.3783
Digit Span	0.19	0.0706	0.22	0.0376	0.06	0.5494	0.08	0.4619	0.02	0.8460	0.03	0.7696
Matrix Reasoning	0.24	0.0226	0.27	0.0108	0.08	0.4695	0.12	0.2522	0.13	0.2250	0.10	0.3301
Vocabulary	0.21	0.0441	0.23	0.0278	0.02	0.8598	0.02	0.8875	-0.06	0.5965	0.00	0.9833
Symbol Search	0.14	0.1910	0.10	0.3279	0.10	0.3325	0.18	0.0839	0.10	0.3650	0.16	0.1284
Coding	0.42	0.0001	0.38	0.0002	-0.07	0.4883	0.05	0.6659	-0.03	0.7915	0.08	0.4822
Verbal Comprehension Index	0.31	0.0029	0.32	0.0023	0.00	0.9995	0.14	0.1991	0.04	0.6829	0.09	0.4016
Processing Speed Index	0.36	0.0004	0.31	0.0035	-0.01	0.9404	0.11	0.3060	0.06	0.5783	0.09	0.4023
Full-scale IQ	0.37	0.0004	0.29	0.0052	0.04	0.7285	0.10	0.3489	0.01	0.8968	0.02	0.8295
Mean	0.22		0.18		0.00		0.07		0.02		0.06	

Table 3. Pearson correlation performance between the ground truth and predicted neurocognitive scores by the regression forest, DNN-1, and DNN-2 in leave-one-sample-out cross-validation. The best correlation value for full-scale IQ is shown in blue font and the best mean correlation value is shown in **bold** font. Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

where g and p are the ground truth and the predicted values, respectively, and N denotes the total number of test data.

3 Results

In this section, we provide comparative neurocognitive score prediction performance by the regression forest, DNN-1, and DNN-2 in terms of Pearson correlation, MAE, MAPE, and the Wilcoxon signed-rank in leave-on-sample-out and leave-one-group-out cross-validation setup. Further, we used the data collection sites as well as the diagnosis, i.e., either CHD or control cohort, as groups. We ultimately compared this performance using two feature sets, once with *deltaAGE* and again without *deltaAGE*.

3.1 Leave-one-sample-out Performance

In Tables 3 and 4, we show the leave-one-subject-out cross-validated prediction performance by the regression forest, DNN-1, and DNN-2. We show the Pearson correlation coefficient (r) between the actual and predicted neurocognitive test scores in Table 3, where we present two sets of results by the regression forest, DNN-1, and DNN-2 for each neurocognitive test. For one set, we combined the brain-age bio-marker (i.e., *deltaAGE*) with other features (shown in columns with header 'w/ *deltaAGE*' in tables), while for another set we did not combine *deltaAGE* with other features (shown in columns with header 'w/ *deltaAGE*' in tables). We see in Table 3 that prediction performance by the regression forest is overall better than that by the DNN-1 and DNN-2, and the correlation (r) is statistically significant (for p-value=0.05) for many tests. On the other hand, the correlation between the actual scores and DNN-predicted scores is worse and not statistically significant (for p-value=0.05) for any test. Therefore, relying more on regression forest-based prediction, we further see that the prediction performance is better in the occasion when *deltaAGE* is combined with other features as confirmed by the higher mean of correlation coefficient (see first column under regression forest in Table 3).

We also show the MAE and MAPE performance between the actual and predicted neurocognitive test scores for 'with *deltaAGE*' and 'without *deltaAGE*' by the regression forest, DNN-1, and DNN-2 for each neurocognitive test in Table 4. Further, we estimated the difference between the actual and predicted scores for 'with *deltaAGE*' and 'without *deltaAGE*' cases followed by the Wilcoxon signed-rank test. The Wilcoxon signed-rank test produces a statistic value of 0 when two distributions perfectly match to each other. Otherwise, the statistic value gets larger as the two distribution gets further away from each other. We see in Table 4 that prediction performance in terms of the MAE and MAPE by the regression forest is overall better than that by the DNN-1 and DNN-2 as depicted by the least mean of MAE and MAPE by the regression forest (see first and second columns under regression forest in Table 4). Further, we see that the Wilcoxon signed-rank statistic value is large between the 'with *deltaAGE*' and 'without *deltaAGE*' cases for regression forest, which infer that prediction performance for 'with *deltaAGE*' is better than that for the 'without *deltaAGE*' case, although this statistic value of not statistically significant (for *p*-value=0.05).

		Regression Forest w/ deltaAGE w/ vs. w/o delta							Γ	NN-1			1		E	NN-2		
Tests	w/ de	ltaAGE	w/o de	eltaAGE	w/ vs. w/o	deltaAGE	w/ de	ltaAGE	w/o de	eltaAGE	w/ vs. w/c	deltaAGE	w/ de	ltaAGE	w/o de	eltaAGE	w/ vs. w/o	deltaAGE
	MAE	MAPE	MAE	MAPE	W. Stat.	p-value	MAE	MAPE	MAE	MAPE	W. Stat.	p-value	MAE	MAPE	MAE	MAPE	W. Stat.	p-value
Word Reading	10.64	0.10	11.07	0.11	1650.00	0.817	14.98	0.14	13.88	0.13	1881.00	0.493	16.15	0.16	15.27	0.15	1810.0	0.431
Sentence C	13.76	0.26	13.98	0.26	1732.00	0.170	17.54	0.29	15.96	0.28	1719.00	0.006	16.56	0.29	16.71	0.29	1639.0	0.137
Spelling	11.99	0.23	12.68	0.23	1952.00	0.859	15.62	0.26	15.34	0.26	1590.00	0.135	16.17	0.27	15.70	0.26	1873.0	0.596
Math Computation	13.70	0.15	13.66	0.15	1969.00	0.966	17.94	0.19	16.29	0.17	1917.00	0.255	16.48	0.17	17.24	0.18	1968.0	0.888
Reading Composite	10.55	0.10	11.24	0.11	1874.00	0.898	15.77	0.15	15.04	0.15	1855.00	0.305	15.57	0.15	15.38	0.15	1832.0	0.485
Block Design	2.15	0.27	2.19	0.28	1899.00	0.678	2.50	0.33	2.50	0.33	1683.00	0.000	2.62	0.35	2.53	0.34	1659.0	0.160
Similarities	2.60	0.32	2.68	0.32	1989.00	0.329	2.86	0.34	2.78	0.33	1903.00	0.443	2.88	0.34	2.84	0.34	1837.0	0.498
Digit Span	2.26	0.25	2.22	0.24	1685.00	0.979	2.46	0.27	2.40	0.26	1921.00	0.175	2.64	0.29	2.41	0.26	1807.0	0.424
Matrix Reasoning	2.07	0.22	2.10	0.22	1833.00	0.901	2.55	0.26	2.34	0.25	1819.00	0.274	2.43	0.26	2.45	0.26	1914.0	0.717
Vocabulary	2.23	0.23	2.25	0.23	1902.00	0.321	2.62	0.28	2.61	0.27	1927.00	0.002	2.61	0.28	2.70	0.28	1898.0	0.669
Symbol Search	2.02	0.24	2.07	0.24	1923.00	0.292	2.14	0.25	2.15	0.25	1940.00	0.158	2.24	0.26	2.19	0.25	1917.0	0.727
Coding	1.87	0.24	1.89	0.25	1698.00	0.436	2.38	0.32	2.40	0.31	1768.00	0.294	2.33	0.30	2.28	0.30	1304.0	0.004
Verbal CI	12.66	0.12	12.74	0.12	1919.00	0.705	16.81	0.16	16.30	0.16	1746.00	0.596	16.51	0.16	16.76	0.16	1682.0	0.190
Processing Speed I	9.33	0.10	9.52	0.10	1808.00	0.038	14.68	0.15	13.15	0.14	1548.00	0.128	14.61	0.15	13.85	0.14	1786.0	0.376
Full-scale IQ	10.95	0.11	10.92	0.11	1739.00	0.619	14.44	0.15	15.35	0.15	1535.00	0.363	15.26	0.16	16.35	0.16	1924.0	0.748
Mean	7.25	0.20	7.41	0.21	1838.13		9.69	0.24	9.23	0.23	1783.47		9.67	0.24	9.64	0.24	1790.0	

Table 4. MAE and MAPE performance, and the Wilcoxon signed-rank test between the ground truth and predicted neurocognitive scores by the regression forest, DNN-1, and DNN-2 in leave-on-sample-out cross-validation setup. The least MAE and MAPE values are shown in **bold** font. Acronyms- w/: with, w/o: without, C: comprehension, I: index, IQ: intelligent quotient, W. Stat.: Wilcoxon signed-rank statistic.

	w/ del		on Fores	t		DN	N-1			DN	N-2	
Tests	w/ d	eltaAGE	w/o a	eltaAGE	w/ de	eltaAGE	w/o d	eltaAGE	w/ de	eltaAGE	w/o <i>d</i>	eltaAGE
	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value
Word Reading	0.21	0.0443	0.20	0.0620	-0.01	0.9588	0.05	0.6438	-0.05	0.6201	0.03	0.7670
Sentence Comprehension	0.11	0.2938	0.08	0.4628	0.16	0.1251	0.17	0.1158	0.07	0.5308	0.18	0.0955
Spelling	0.09	0.3863	0.06	0.5571	0.07	0.5236	0.06	0.5687	0.02	0.8620	0.09	0.4011
Math Computation	0.06	0.5824	0.06	0.5932	-0.05	0.6567	0.03	0.7746	-0.04	0.6914	0.02	0.8644
Reading Composite	0.26	0.0131	0.13	0.2119	0.11	0.3167	0.10	0.3503	0.07	0.5152	0.07	0.5278
Block Design	0.17	0.1173	0.14	0.1940	-0.12	0.2742	-0.15	0.1749	-0.13	0.2308	-0.15	0.1648
Similarities	0.24	0.0217	0.17	0.1164	0.02	0.8399	0.08	0.4572	0.05	0.6707	0.12	0.2588
Digit Span	0.24	0.0223	0.25	0.0188	0.01	0.9176	0.11	0.3185	-0.02	0.8239	0.04	0.6906
Matrix Reasoning	0.13	0.2333	0.11	0.2955	0.00	0.9665	0.07	0.4925	0.13	0.2297	0.07	0.5042
Vocabulary	0.08	0.4376	0.13	0.2126	0.11	0.3214	0.01	0.9051	0.03	0.8105	0.07	0.5087
Symbol Search	0.07	0.4965	0.05	0.6492	0.06	0.5733	0.13	0.2258	0.04	0.7127	0.11	0.2856
Coding	0.13	0.2165	0.26	0.0125	-0.06	0.5650	-0.02	0.8391	-0.02	0.8580	0.05	0.6395
Verbal Comprehension Index	0.19	0.0745	0.21	0.0481	0.10	0.3532	0.07	0.5291	0.05	0.6147	0.11	0.3241
Processing Speed Index	0.15	0.1593	0.22	0.0394	0.08	0.4689	0.15	0.1657	0.07	0.5097	0.04	0.7197
Full-scale IQ	0.27	0.0096	0.25	0.0175	0.09	0.4235	0.08	0.4486	0.06	0.6005	0.09	0.3888
Mean	0.16		0.15		0.04		0.06		0.02		0.06	

Table 5. Pearson correlation performance between the ground truth and predicted neurocognitive scores by the regression forest, DNN-1, and DNN-2 in leave-one-group-out cross-validation. In this table, we use data collection sites as groups. The best correlation value for full-scale IQ is shown in blue font and the best mean correlation value is shown in bold font. Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

3.2 Leave-one-group-out Performance

We further tested the neurocognitive score prediction performance by the regression forest, DNN-1, and DNN-2 in leave-onegroup-out cross-validation. We considered two different attributes for two different group-based cross-validation. First, we used data collection sites as groups, and second, diagnosis (i.e., CHD and control cohorts) as groups. In the following sections, we present those findings.

3.2.1 Cohorts of Seven Data Collection Sites as Groups

In Tables 5 and 6, we show the leave-one-group-out cross-validated prediction performance by the regression forest, DNN-1, and DNN-2 for 'with *deltaAGE*' and 'without *deltaAGE*' cases. We show the Pearson correlation coefficient (r) between the actual and predicted neurocognitive test scores in Table 5, where see that prediction performance by the regression forest is overall better than that by the DNN-1 and DNN-2, and the correlation (r) statistically significant (for p-value=0.05) for several tests including 'Full-scale IQ.' On the other hand, the correlation between the actual scores and DNN-predicted scores is worse and not statistically significant (for p-value=0.05) for any test. Furthermore, we see that the prediction performance by the regression forest is better for the 'with *deltaAGE*' than the 'without *deltaAGE*' case (see first column under 'Regression Forest' in Table 5).

We further show the MAE and MAPE performance between the actual and predicted neurocognitive test scores for 'with *deltaAGE*' and 'without *deltaAGE*' by the regression forest, DNN-1, and DNN-2 for each neurocognitive test in Table 6.

			Regression Forest w/o deltaAGE w/ vs. w/o deltaAGE						Е	NN-1					E	NN-2		
Tests	w/ de	ltaAGE	w/o de	eltaAGE	w/ vs. w/o	deltaAGE	w/ de	ltaAGE	w/o de	eltaAGE	w/ vs. w/o	deltaAGE	w/ de	ltaAGE	w/o de	eltaAGE	w/ vs. w/o	deltaAGE
	MAE	MAPE	MAE	MAPE	W. Stat.	p-value	MAE	MAPE	MAE	MAPE	W. Stat.	p-value	MAE	MAPE	MAE	MAPE	W. Stat.	p-value
Word Reading	10.31	0.10	10.83	0.10	1946.0	0.817	17.02	0.16	16.82	0.16	1835.00	0.493	17.02	0.16	17.22	0.16	1966.00	0.881
Sentence C	15.45	0.28	16.87	0.29	1667.0	0.170	20.53	0.31	18.48	0.30	1331.00	0.006	18.77	0.30	16.81	0.29	1132.00	0.000
Spelling	11.55	0.22	12.39	0.23	1959.0	0.859	18.00	0.28	17.76	0.28	1637.00	0.135	17.73	0.28	16.32	0.27	1461.00	0.027
Math Computation	13.42	0.14	13.34	0.14	1992.0	0.966	19.04	0.19	18.24	0.19	1724.00	0.255	18.98	0.19	17.63	0.18	1588.00	0.090
Reading Composite	10.44	0.10	11.01	0.11	1971.0	0.898	15.77	0.15	16.87	0.16	1752.00	0.305	16.27	0.16	16.10	0.16	1168.00	0.001
Block Design	2.32	0.32	2.34	0.32	1901.0	0.678	2.74	0.35	2.62	0.35	1058.00	0.000	2.64	0.35	2.60	0.34	1812.00	0.436
Similarities	2.67	0.33	2.76	0.34	1764.0	0.329	2.91	0.34	2.97	0.34	1815.00	0.443	2.97	0.35	3.00	0.34	1671.00	0.175
Digit Span	2.20	0.23	2.20	0.23	1996.0	0.979	2.69	0.28	2.53	0.26	1671.00	0.175	2.64	0.29	2.56	0.28	1866.00	0.577
Matrix Reasoning	2.23	0.24	2.25	0.24	1972.0	0.901	2.65	0.28	2.54	0.26	1735.00	0.274	2.48	0.26	2.61	0.26	788.00	0.000
Vocabulary	2.35	0.24	2.31	0.24	1760.0	0.321	2.68	0.27	2.82	0.29	1229.00	0.002	2.74	0.28	2.62	0.27	1680.00	0.187
Symbol Search	2.12	0.25	2.12	0.26	1745.0	0.292	2.29	0.26	2.20	0.26	1657.00	0.158	2.26	0.27	2.27	0.27	1813.00	0.438
Coding	2.03	0.29	1.96	0.28	1812.0	0.436	2.39	0.31	2.37	0.30	1746.00	0.294	2.37	0.31	2.25	0.29	1656.00	0.156
Verbal CI	13.60	0.13	13.64	0.13	1910.0	0.705	16.89	0.16	18.14	0.17	1873.00	0.596	18.58	0.18	17.31	0.16	1389.00	0.012
Processing Speed I	10.29	0.11	9.80	0.11	1495.0	0.038	15.06	0.15	14.29	0.15	1630.00	0.128	14.85	0.15	15.02	0.15	1958.00	0.856
Full-scale IQ	11.42	0.12	11.36	0.12	1881.0	0.619	16.29	0.16	16.11	0.16	1780.00	0.363	16.48	0.17	15.51	0.16	1745.00	0.292
Mean	7.49	0.20	7.68	0.21	1851.4		10.46	0.24	10.32	0.24	1631.53		10.45	0.25	9.99	0.24	1579.53	

Table 6. MAE and MAPE performance, and the Wilcoxon signed-rank test between the ground truth and predicted neurocognitive scores by the regression forest, DNN-1, and DNN-2 in leave-one-group-out cross-validation. In this table, we use data collection sites as groups. The least MAE and MAPE values are shown in **bold** font. Acronyms- w/: with, w/o: without, C: comprehension, I: index, IQ: intelligent quotient, W. Stat.: Wilcoxon signed-rank statistic.

We also estimated the difference between the actual and predicted scores for 'with *deltaAGE*' and 'without *deltaAGE*' cases followed by the Wilcoxon signed-rank test. We see in Table 6 that prediction performance in terms of the MAE and MAPE by the regression forest is overall better than that by the DNN-1 and DNN-2 as depicted by the least mean of MAE and MAPE by the regression forest (see first and second columns under 'Regression Forest' in Table 6). Further, we see that the Wilcoxon signed-rank statistic value is large between the 'with *deltaAGE*' and 'without *deltaAGE*' cases for regression forest, which infer that prediction performance for 'with *deltaAGE*' is better than that for the 'without *deltaAGE*' case, although this statistic value of not statistically significant (for *p*-value=0.05).

3.2.2 CHD and Control Cohorts as Groups

In Tables 7, 8, and 9, we show the leave-one-group-out cross-validated prediction performance in terms of Pearson correlation coefficient (r) between the actual and predicted neurocognitive test scores by the regression forest, DNN-1, and DNN-2, respectively, for 'with *deltaAGE*' and 'without *deltaAGE*' cases. In these tables, we used the CHD and control cohorts as groups. We see in these tables that prediction performance by all the approaches (i.e., regression forest, DNN-1, and DNN-2) are found to be better for 'without *deltaAGE*' case and when control cohort is used for training and CHD cohort for validation, as depicted by the best mean r in respective tables of regression forests, DNN-1, and DNN-2 (see the second last columns under 'LOGO (Training: Control, Test: CHD)' in Tables 7, 8, and 9). In addition, the prediction performance in terms of r is found to be the best for the DNN-2 approach (see Table 9), although we see correlation performance to be statistically significant (for p-value=0.05) for fewer tests than we found for the regression forest in leave-one-sample-out cross-validations in Table 3, and leave-one-group-out (where, data collection sites as group) cross-validations in Table 5.

We also show the MAE and MAPE performance between the actual and predicted neurocognitive test scores for 'with deltaAGE' and 'without deltaAGE' by the regression forest, DNN-1, and DNN-2 for each neurocognitive test in Tables 10, 11, and 12, respectively. We further estimated the difference between the actual and predicted scores for 'with *deltaAGE*' and 'without *deltaAGE*' cases followed by the Wilcoxon signed-rank test and showed the Wilcoxon statistic and associated *p*-value in Tables 10, 11, and 12. We see in Table 6 that prediction performance in terms of the MAE and MAPE by the regression forest is overall better for 'without *deltaAGE*' case and when the control cohort is used for training and CHD cohort for validation, as depicted by the least mean MAE and mean MAPE. On the other hand, for DNN-1 and DNN-2, prediction performance in terms of the MAE and MAPE is overall better (i.e., least MAE and MAPE) for 'without deltaAGE' case but when CHD cohort is used for training and control cohort for validation (Tables 11 and 12). Thus, irrespective of the training and validation group, all approaches, i.e., regression forest, DNN-1, and DNN-2, performed better in prediction for the 'without deltaAGE' case. This is the opposite finding of what we found in the leave-one-subject-out and leave-one-group-out (the group being the data collection site) cross-validation setup as seen in Tables 4 and 6. Further, we see that the Wilcoxon signed-rank statistic value is smaller (< 500) between the 'with *deltaAGE*' and 'without *deltaAGE*' cases for regression forest, DNN-1, and DNN-2, compared to those (> 1500) for leave-one-subject-out and leave-one-group-out (group being data collection site) cross-validation setup as seen in Tables 4 and 6. It infers that prediction distributions for 'with *deltaAGE*' and 'without *deltaAGE*' are closer to each other when the leave-one-group-out setup uses CHD and control cohorts as groups.

3.3 Full-scale IQ Prediction Performance

Full-scale IQ is typically used to assess human general intelligence, the fundamental ability that combines all subdomains of neurocognitive abilities^{42,43}. These subdomain abilities can be assessed via different neurocognitive tests, some of which are

	LOGO	(Training:	CHD, Te	st: Control)	LOGO	(Training:	Control,	Test: CHD)
Tests	w/ de	eltaAGE	w/o a	deltaAGE	w/ de	eltaAGE	w/o a	leltaAGE
	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value
Word Reading	0.08	0.6227	0.08	0.5932	-0.16	0.2998	0.10	0.5028
Sentence Comprehension	-0.12	0.4583	-0.19	0.2103	0.06	0.6808	-0.06	0.7071
Spelling	-0.10	0.5126	-0.17	0.2767	-0.07	0.6394	0.04	0.8081
Math Computation	0.10	0.5141	0.09	0.5571	0.08	0.6102	0.23	0.1301
Reading Composite	-0.06	0.6936	0.02	0.9137	-0.06	0.6927	0.20	0.1752
Block Design	0.16	0.2959	0.14	0.3855	0.12	0.4149	0.17	0.2563
Similarities	0.10	0.5094	0.13	0.4121	0.11	0.4683	0.09	0.5423
Digit Span	0.10	0.5290	0.08	0.5973	0.17	0.2545	0.15	0.3171
Matrix Reasoning	0.19	0.2176	0.13	0.3957	0.11	0.4622	0.11	0.4869
Vocabulary	-0.15	0.3426	-0.05	0.7593	0.07	0.6451	0.12	0.4315
Symbol Search	0.16	0.3121	0.09	0.5607	0.21	0.1533	0.17	0.2705
Coding	0.42	0.0051	0.38	0.0130	0.29	0.0515	0.38	0.0091
Verbal Comprehension Index	0.10	0.5424	0.08	0.5987	0.15	0.3232	0.16	0.2894
Processing Speed Index	0.32	0.0353	0.24	0.1200	0.36	0.0127	0.33	0.0240
Full-scale IQ	0.19	0.2129	0.04	0.7896	0.13	0.3974	0.17	0.2564
Mean	0.10		0.07		0.10		0.16	

Table 7. Pearson correlation performance between the ground truth and predicted neurocognitive scores by the regression forest in leave-one-group-out (LOGO) cross-validation. In this table, we used the CHD cohort for training and the control cohort for validation, and vice versa. The best correlation value for full-scale IQ is shown in **blue** font and the best mean correlation value is shown in **bold** font. Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

	LOGO	(Training:	CHD, Te	st: Control)	LOGC	O (Training:	Control	, Test: CHD)
Tests	w/ de	eltaAGE	w/o a	deltaAGE	w/ de	eltaAGE	w/c	deltaAGE
	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value
Word Reading	-0.29	0.0573	-0.24	0.1154	0.13	0.3866	0.18	0.2340
Sentence Comprehension	-0.04	0.8117	-0.21	0.1854	0.33	0.0242	0.38	0.0083
Spelling	-0.15	0.3381	-0.03	0.8720	0.14	0.3635	0.24	0.1114
Math Computation	-0.32	0.0380	-0.24	0.1193	0.21	0.1619	0.19	0.2143
Reading Composite	-0.26	0.0964	-0.18	0.2563	0.31	0.0380	0.32	0.0324
Block Design	-0.39	0.0089	-0.28	0.0668	0.01	0.9335	0.09	0.5740
Similarities	-0.28	0.0686	-0.03	0.8676	0.25	0.0889	0.22	0.1506
Digit Span	-0.24	0.1208	-0.02	0.9088	0.06	0.7125	0.22	0.1428
Matrix Reasoning	-0.11	0.4781	-0.16	0.3144	0.19	0.2068	0.20	0.1834
Vocabulary	-0.10	0.5065	-0.20	0.2030	0.33	0.0272	0.29	0.0515
Symbol Search	0.03	0.8413	0.12	0.4400	0.12	0.4349	0.17	0.2722
Coding	0.00	0.9839	0.05	0.7366	0.17	0.2675	0.30	0.0441
Verbal Comprehension Index	-0.10	0.5048	-0.01	0.9636	0.34	0.0215	0.27	0.0732
Processing Speed Index	0.10	0.5030	0.09	0.5566	0.06	0.7001	0.21	0.1530
Full-scale IQ	-0.24	0.1143	-0.16	0.3120	0.31	0.0362	0.20	0.1750
Mean	-0.16		-0.10		0.20		0.23	

Table 8. Pearson correlation performance between the ground truth and predicted neurocognitive scores by the DNN-1 in leave-one-group-out (LOGO) cross-validation. In this table, we used the CHD cohort for training and the control cohort for validation, and vice versa. The best correlation value for full-scale IQ is shown in blue font and the best mean correlation value is shown in **bold** font. Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

	LOGO	(Training:	CHD, Te	st: Control)	LOGO	(Training:	Control,	Test: CHD)
Tests	w/ de	eltaAGE	w/o a	leltaAGE	w/ de	ltaAGE	w/o	deltaAGE
	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value	r	<i>p</i> -value
Word Reading	-0.37	0.0157	-0.18	0.2552	0.17	0.2665	0.18	0.2412
Sentence Comprehension	-0.22	0.1607	-0.10	0.5189	0.36	0.0151	0.33	0.0267
Spelling	-0.12	0.4310	0.04	0.7930	0.18	0.2306	0.16	0.2829
Math Computation	-0.32	0.0370	-0.23	0.1343	0.14	0.3609	0.20	0.1909
Reading Composite	-0.35	0.0202	-0.23	0.1405	0.35	0.0179	0.36	0.0138
Block Design	-0.41	0.0058	-0.38	0.0109	-0.05	0.7590	0.09	0.5403
Similarities	-0.21	0.1872	-0.12	0.4451	0.30	0.0426	0.23	0.1208
Digit Span	-0.17	0.2739	-0.12	0.4308	0.17	0.2489	0.25	0.0942
Matrix Reasoning	-0.17	0.2786	-0.03	0.8632	0.18	0.2443	0.27	0.0676
Vocabulary	-0.22	0.1489	-0.15	0.3384	0.23	0.1206	0.36	0.0154
Symbol Search	0.03	0.8508	0.16	0.3207	0.07	0.6650	0.22	0.1506
Coding	-0.09	0.5670	-0.06	0.7223	0.06	0.7106	0.16	0.2865
Verbal Comprehension Index	-0.14	0.3653	-0.21	0.1752	0.28	0.0563	0.37	0.0122
Processing Speed Index	0.00	0.9937	0.03	0.8710	0.23	0.1320	0.22	0.1491
Full-scale IQ	-0.23	0.1428	-0.11	0.4656	0.29	0.0475	0.27	0.0670
Mean	-0.20		-0.11		0.20		0.24	

Table 9. Pearson correlation performance between the ground truth and predicted neurocognitive scores by the DNN-2 in leave-one-group-out (LOGO) cross-validation. In this table, we used the CHD cohort for training and the control cohort for validation, and vice versa. The best correlation value for full-scale IQ is shown in **blue** font and the best mean correlation value is shown in **bold** font. Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

		LOG	O (Training: C	CHD, Test: Co	ontrol)		11		LOG	O (Training: C	Control, Test:	CHD)	
Tests	w/ delt	aAGE	w/o del	taAGE	w/ vs. w/c	deltaAGE	T	w/ delt	aAGE	w/o del	taAGE	w/ vs. w/o	deltaAGE
	MAE	MAPE	MAE	MAPE	W. Stat.	p-value		MAE	MAPE	MAE	MAPE	W. Stat.	p-value
Word Reading	11.1711	0.1127	11.8116	0.1186	419.0	0.5220	11	11.8432	0.1071	11.1981	0.1012	354.0	0.0414
Sentence Comprehension	13.6002	0.2266	13.8749	0.2297	463.0	0.9096	Ш	13.6533	0.2972	13.5617	0.3061	501.0	0.6729
Spelling	14.0151	0.3776	14.5038	0.3811	407.0	0.4328	Ш	14.7320	0.1344	15.2182	0.1402	410.0	0.1569
Math Computation	13.9749	0.1402	13.9858	0.1421	257.0	0.0083	Ш	13.3565	0.1468	12.2133	0.1325	268.0	0.0024
Reading Composite	12.0509	0.1255	11.8614	0.1235	462.0	0.9001	Ш	11.2439	0.1022	10.3844	0.0935	337.0	0.0256
Block Design	2.1823	0.2384	2.2843	0.2507	331.0	0.0876	Ш	2.5841	0.3922	2.5206	0.3851	510.0	0.7454
Similarities	3.0422	0.4195	2.9494	0.4146	355.0	0.1574	Ш	2.7351	0.2650	2.8378	0.2721	421.0	0.1955
Digit Span	2.6753	0.3329	2.7397	0.3410	333.0	0.0923	Ш	2.5100	0.2262	2.5614	0.2295	458.0	0.3738
Matrix Reasoning	1.9443	0.2040	2.0412	0.2152	462.0	0.9001	Ш	2.5741	0.2655	2.5778	0.2655	450.0	0.3287
Vocabulary	2.7102	0.3222	2.6630	0.3161	411.0	0.4616	11	2.2484	0.1857	2.2284	0.1840	367.0	0.0583
Symbol Search	1.7971	0.2173	1.9004	0.2295	415.0	0.4913	11	2.2447	0.2619	2.2244	0.2536	310.0	0.0110
Coding	1.7037	0.2440	1.7452	0.2517	448.0	0.7696	11	2.1192	0.2674	2.1094	0.2558	233.0	0.0005
Verbal Comprehension Index	15.0922	0.1497	15.2359	0.1526	259.0	0.0090	11	13.6165	0.1274	13.2727	0.1239	293.0	0.0062
Processing Speed Index	8.6544	0.0922	9.1939	0.0983	459.0	0.8718	11	10.0753	0.1070	10.4144	0.1091	247.0	0.0010
Full-scale IQ	11.2125	0.1168	12.2658	0.1280	380.0	0.2670	II.	12.6172	0.1262	12.2527	0.1210	244.0	0.0009
Mean	7.7217	0.2213	7.9370	0.2261	390.7		T	7.8769	0.2008	7.7050	0.1982	360.2	

Table 10. MAE and MAPE performance, and the Wilcoxon signed-rank test between the ground truth and predicted neurocognitive scores by the regression forest in leave-one-group-out (LOGO) cross-validation. In this table, we used the CHD cohort for training and the control cohort for validation, and vice versa. The least MAE and MAPE values are shown in **bold** font. Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

		LOG	O (Training: C	HD, Test: C	ontrol)	1		LOG	O (Training: C	Control, Test:	CHD)	
Tests	w/ delt	aAGE	w/o del	taAGE	w/ vs. w/c	deltaAGE	w/ deli	aAGE	w/o del	taAGE	w/ vs. w/o	deltaAGE
	MAE	MAPE	MAE	MAPE	W. Stat.	p-value	MAE	MAPE	MAE	MAPE	W. Stat.	p-value
Word Reading	13.9479	0.1299	14.7447	0.1347	395.0	0.3530	19.8863	0.1907	18.7606	0.1797	529.0	0.9053
Sentence Comprehension	19.0063	0.1795	15.6457	0.1470	264.0	0.0108	21.9458	0.4388	21.1289	0.4355	418.0	0.1843
Spelling	17.0929	0.1586	15.7440	0.1441	412.0	0.4689	18.8546	0.4009	19.6379	0.4144	415.0	0.1737
Math Computation	15.0337	0.1464	15.7065	0.1560	322.0	0.0689	22.7792	0.2396	20.6095	0.2153	518.0	0.8118
Reading Composite	14.5614	0.1369	14.4271	0.1355	385.0	0.2939	16.8978	0.1619	19.1627	0.1885	342.0	0.0296
Block Design	2.3164	0.3265	2.2749	0.3428	191.0	0.0004	3.1320	0.3744	2.9371	0.3629	359.0	0.0473
Similarities	2.4924	0.2961	2.6091	0.3108	280.0	0.0190	3.2987	0.3808	3.3002	0.3692	462.0	0.3976
Digit Span	2.4252	0.2376	2.5185	0.2484	460.0	0.8813	2.9390	0.3227	2.5361	0.2699	364.0	0.0539
Matrix Reasoning	2.5280	0.2933	2.4866	0.2791	280.0	0.0190	2.7586	0.2583	2.5969	0.2406	474.0	0.4745
Vocabulary	2.3692	0.2398	2.2670	0.2370	337.0	0.1022	2.9678	0.2932	3.3282	0.3368	282.0	0.0041
Symbol Search	2.2018	0.2822	2.0124	0.2633	348.0	0.1338	2.3634	0.2436	2.3672	0.2496	514.0	0.7784
Coding	2.3310	0.3850	2.0173	0.3417	467.0	0.9476	2.4497	0.2447	2.7041	0.2659	360.0	0.0486
Verbal Comprehension Index	13.7220	0.1329	14.1592	0.1370	426.0	0.5780	19.8477	0.1864	21.8574	0.2051	522.0	0.8456
Processing Speed Index	14.8407	0.1588	11.8377	0.1289	333.0	0.0923	15.2727	0.1478	16.5728	0.1609	530.0	0.9138
Full-scale IQ	13.7428	0.1417	12.5480	0.1307	382.0	0.2776	18.6767	0.1821	19.4363	0.1871	511.0	0.7536
Mean	9.2407	0.2163	8.7332	0.2091	352.1		11.6046	0.2710	11.7957	0.2720	440	

Table 11. MAE and MAPE performance, and the Wilcoxon signed-rank test between the ground truth and predicted neurocognitive scores by the DNN-1 in leave-one-group-out (LOGO) cross-validation. In this table, we used the CHD cohort for training and the control cohort for validation, and vice versa. The least MAE and MAPE values are shown in **bold** font. Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

	LOGO (Training: CHD, Test: Control)						11		LOG	O (Training: C	Control, Test:	CHD)	
Tests	w/ delt	aAGE	w/o del	taAGE	w/ vs. w/c	deltaAGE	Π	w/ delt	aAGE	w/o del	taAGE	w/ vs. w/o	deltaAGE
	MAE	MAPE	MAE	MAPE	W. Stat.	p-value	Π	MAE	MAPE	MAE	MAPE	W. Stat.	p-value
Word Reading	13.2943	0.1231	15.1261	0.1409	356.0	0.1610	П	20.5105	0.1965	19.1704	0.1840	424.0	0.2071
Sentence Comprehension	14.7697	0.1376	13.2474	0.1248	208.0	0.0010	Ш	22.5004	0.4599	20.1314	0.4411	365.0	0.0553
Spelling	16.2302	0.1512	13.3411	0.1229	266.0	0.0116	Ш	19.1321	0.4002	19.1003	0.4036	491.0	0.5957
Math Computation	14.8633	0.1455	13.9531	0.1388	301.0	0.0375	Ш	22.8232	0.2406	21.0758	0.2228	506.0	0.7129
Reading Composite	13.3242	0.1248	12.6260	0.1216	306.0	0.0436	Ш	19.0143	0.1840	19.3446	0.1889	286.0	0.0048
Block Design	2.2457	0.3266	2.2006	0.3233	467.0	0.9476	Ш	3.0129	0.3664	2.9769	0.3611	450.0	0.3287
Similarities	2.6116	0.3217	2.5551	0.3027	323.0	0.0708	Ш	3.3059	0.3760	3.4086	0.3775	479.0	0.5087
Digit Span	2.3792	0.2412	2.2749	0.2365	459.0	0.8718	Ш	2.8777	0.3269	2.8348	0.3148	448.0	0.3180
Matrix Reasoning	2.2831	0.2748	2.4360	0.2722	53.0	0.0001	Ш	2.6618	0.2469	2.7815	0.2549	389.0	0.0993
Vocabulary	2.2523	0.2464	1.9998	0.2089	216.0	0.0015	Ш	3.1952	0.3168	3.2069	0.3203	474.0	0.4745
Symbol Search	2.1770	0.2891	1.9019	0.2501	471.0	0.9857	Ш	2.3401	0.2507	2.6100	0.2811	454.0	0.3508
Coding	2.1010	0.3673	2.0252	0.3511	468.0	0.9571	Ш	2.6123	0.2645	2.4581	0.2421	353.0	0.0402
Verbal Comprehension Index	15.2878	0.1494	12.1968	0.1191	338.0	0.1048	Ш	21.6491	0.2015	22.0946	0.2043	365.0	0.0553
Processing Speed Index	12.6538	0.1390	12.6416	0.1365	418.0	0.5143	Ш	16.9028	0.1662	17.2474	0.1707	441.0	0.2823
Full-scale IQ	14.0394	0.1445	12.4544	0.1299	433.0	0.6367	П	18.7664	0.1842	18.3644	0.1814	462.0	0.3976
Mean	8.7008	0.2121	8.0653	0.1986	338.8			12.0869	0.2787	11.7870	0.2765	425.8	

Table 12. MAE and MAPE performance, and the Wilcoxon signed-rank test between the ground truth and predicted neurocognitive scores by the DNN-2 in leave-one-group-out (LOGO) cross-validation. In this table, we used the CHD cohort for training and the control cohort for validation, and vice versa. The least MAE and MAPE values are shown in **bold** font. Acronyms- w/: with, w/o: without, IQ: intelligent quotient.

available with the PCGC dataset we used in this study (see Table 2). However, the full-scale IQ provides an overall quantification of a person's general intelligence. Furthermore, full-scale IQ is not calculated by typical averaging of all subdomain scores, but rather by employing factor load analysis, resulting in heterogenous subdomain contributions to full-scale IQ⁴². Therefore, we also check the effect of brain-age bio-marker in the prediction of the full-scale IQ in this study. In Fig. 2, we show plots of the best predicted full-scale IQ scores in each of the three cross-validation setups. We observe in all three cross-validation setups in Figs. 2(a-c) that the prediction models performed better with statistical significance (*p*-value=0.05) when the feature set included *deltaAGE*, although overall performance in terms of mean correlation over all the test sometimes differed as seen Tables 7, 8, and 9.

Figure 2. Best 'Full-scale IQ' score prediction performance in terms of Pearson correlation in three cross-validation setups. Best prediction (a) by the regression forest in the leave-one-sample-out cross-validation, (b) by the regression forest in leave-one-group-out cross-validation, where a group is the data collection site, and (c) by the DNN-1 in leave-one-group-out cross-validation, where a group being either CHD or control cohort.

4 Discussion

In this study, we conducted experiments to quantify the effect of brain-age bio-marker in predicting neurocognitive scores in adolescents and young adults with CHD. To perform this test, we employed regression forest and two DNNs on demographic, socioeconomic, and genetic factors. Our findings demonstrate the potential of leveraging MRI-based brain-age bio-marker for predicting neurocognition in patients with CHD. However, this investigation also presented us with several unanswered questions. For example, the size of the training data remains a concern when using deep neural network frameworks, as

Figure 3. Ditribution of the ground truth scores of different neurocognitive tests.

discussed by Richter et al.⁴⁴. We had only 89 data samples in this study, which may not be sufficient to draw definitive conclusions. Despite these lingering questions, our study reveals that brain-age bio-marker can aid in predicting neurocognitive scores. Several key points arising from our findings warrant further discussion:

4.1 Pearson correlation vs. MAE

The Pearson correlation coefficient (r) seems more reliable than the MAE and MAPE metrics in neurocognition prediction accuracy estimation. The distribution of neurocognitive scores in our dataset follows a Gaussian-like distribution (see Fig. 3). As a result, a central tendency of the predicted scores towards the mean results in a low MAE and MAPE, although predictions were often inaccurate. Therefore, we considered r as a better indicator of the accuracy of the predicted IQ scores. In addition, the associated p value indicates the statistical significance of the estimated correlation.

4.2 Comparison to Structural MRI-based State-of-the-arts on Smaller Data

Several studies^{45–47} predicted the full-scale IQ score, which showed a correlation of 30-70% (p < 0.01) between the ground truth and estimated absolute full-scale IQ scores. These studies used a dataset of size less than 250 healthy subjects with an age distribution of 6–27 years. Our dataset consists of 89 patients with an age distribution of 7–30 years, and we achieved the best correlation between the actual and predicted full-scale IQ of 37% (see Table 3 and Fig. 2(a)) but without using structural MRI directly, rather employing demographic, socioeconomic, and genetic factors.

4.3 Test of Hypothesis

In this paper, we tested the hypothesis that combining demographics, socioeconomic, or genetic factors, and adding a brain MRI-based quantified severity of accelerated brain aging, can better predict neurocognitive outcomes than without the brain age biomarker. In our results, we observed that the mean correlation coefficient is better for the 'with *deltaAGE*' case than the 'without *deltaAGE*' in the leave-one-subject-out and the leave-one-group-out (where the group is the data collection site) as seen in Tables 3 and 5. However, in the leave-one-group-out (where the group is the CHD/control cohort) setup, the mean correlation coefficient is better for the 'with *deltaAGE*' (see Tables 7, 8, and 9). Since,

- 1. The Pearson correlation is preferable to the MAE and MAPE metrics in this study (discussed earlier),
- 2. The size of the training data remains a concern when using DNN frameworks (discussed earlier),
- 3. Leave-one-group-out cross-validation with considering CHD/control cohorts as groups forced us to keep out about 50% of the data for validation, resulting in the smallest data size for training among our three cross-validation setup, and
- 4. Full-scale IQ is not calculated by typical averaging of all subdomain scores, but rather by employing factor load analysis, resulting in heterogenous subdomain contributions to full-scale IQ (discussed earlier),

We can consider Pearson correlation performance on full-scale IQ prediction by the leave-one-subject-out and the leave-onegroup-out (where the group is the data collection site) more trustworthy than the overall mean correlation. Based on this consideration, we see in Fig. 2 that the Pearson correlation (r) for full-scale IQ prediction is better for 'with *deltaAGE*' than the 'without *deltaAGE*' in all three cross-validation setups. In addition, all the correlations between the ground truth and predicted full-scale IQ corresponding to 'with *deltaAGE*' cases are statistically significant (p-value < 0.05). Thus, our hypothesis that adding brain-age bio-marker to demographic, socioeconomic, and genetic factors in predicting neurocognition in adolescents and young adults with CHD stands true.

4.4 Limitations

While our paper presents valuable findings, it is important to acknowledge several limitations. Firstly, our study employed a relatively small sample size of only 89 patients. Increasing the sample size would enhance the statistical power and broaden the generalizability of our results. Secondly, by amalgamating data from both control and CHD groups, we may have introduced confounding variables, thereby restricting our ability to make specific conclusions about each group. Future investigations should contemplate analyzing these groups separately to gain a more precise understanding of the distinct contributions of brain structure to intelligence within each population. Furthermore, our analysis exclusively relied on a single dataset, potentially limiting the applicability of our findings to other populations or imaging protocols. To ensure the robustness of our results, it would be beneficial to validate them using multiple independent datasets. In addition, our study exclusively employed regression forest and DNN architectures and did not explore the potential advantages of utilizing alternative models such as support vector regressors or Vision Transformers (ViTs). Assessing various learning approaches could yield valuable insights and potentially enhance predictive performance. Lastly, our study concentrated solely on demographic, socioeconomic, genetic, and MRI-based brain-age biomarkers, omitting actual MRI features that could contribute to a more comprehensive understanding of the relationship between brain structure and intelligence. Future research should consider integrating these additional data sources to offer a more holistic perspective on intelligence prediction.

Conclusion

In conclusion, this study provided valuable insights into the prediction of neurocognitive outcomes in CHD patients. Our results highlighted the utility of including a brain MRI-based bio-marker, *deltaAGE*, in predictive models, showing consistent improvements in prediction performance. However, it is essential to acknowledge several limitations, such as the relatively small sample size and the amalgamation of data from both control and CHD groups, potentially introducing confounding variables. Future research should address these limitations by increasing sample sizes, analyzing groups separately, and validating findings with multiple independent datasets. Moreover, exploring alternative machine learning models could offer further improvements in predictive accuracy. Additionally, integrating actual MRI features into the analysis could provide a more comprehensive understanding of the relationship between brain structure and intelligence. Overall, this study contributes to our understanding of neurocognitive prediction in CHD patients and paves the way for further research in this field.

References

- 1. Lopez, K. N., Morris, S. A., Sexson Tejtel, S. K., Espaillat, A. & Salemi, J. L. Us mortality attributable to congenital heart disease across the lifespan from 1999 through 2017 exposes persistent racial/ethnic disparities. *Circulation* 142, 1132–1147 (2020).
- 2. Udine, M. L., Evans, F., Burns, K. M., Pearson, G. D. & Kaltman, J. R. Geographical variation in infant mortality due to congenital heart disease in the usa: a population-based cohort study. *The Lancet Child & Adolesc. Heal.* 5, 483–490 (2021).
- **3.** Boneva, R. S. *et al.* Mortality associated with congenital heart defects in the united states: trends and racial disparities, 1979–1997. *Circulation* **103**, 2376–2381 (2001).
- 4. Gilboa, S. M., Salemi, J. L., Nembhard, W. N., Fixler, D. E. & Correa, A. Mortality resulting from congenital heart disease among children and adults in the united states, 1999 to 2006. *Circulation* **122**, 2254–2263 (2010).
- 5. Russell, M. W., Chung, W. K., Kaltman, J. R. & Miller, T. A. Advances in the understanding of the genetic determinants of congenital heart disease and their impact on clinical outcomes. *J. Am. Hear. Assoc.* 7, e006906 (2018).
- Sun, R., Liu, M., Lu, L., Zheng, Y. & Zhang, P. Congenital heart disease: causes, diagnosis, symptoms, and treatments. *Cell biochemistry biophysics* 72, 857–860 (2015).
- 7. Kasmi, L. *et al.* Neurocognitive and psychological outcomes in adults with dextro-transposition of the great arteries corrected by the arterial switch operation. *The Annals thoracic surgery* **105**, 830–836 (2018).

- Bellinger, D. C. *et al.* Adolescents with tetralogy of fallot: neuropsychological assessment and structural brain imaging. *Cardiol. Young* 25, 338–347 (2015).
- 9. Schaefer, C. *et al.* Neurodevelopmental outcome, psychological adjustment, and quality of life in adolescents with congenital heart disease. *Dev. Medicine & Child Neurol.* 55, 1143–1149 (2013).
- Miller, S. P. *et al.* Abnormal brain development in newborns with congenital heart disease. *New Engl. J. Medicine* 357, 1928–1938 (2007).
- 11. Donofrio, M. T., Limperopoulos, C. *et al.* Impact of congenital heart disease on fetal brain development and injury. *Curr. opinion pediatrics* 23, 502–511 (2011).
- McQuillen, P. S., Goff, D. A. & Licht, D. J. Effects of congenital heart disease on brain development. *Prog. pediatric cardiology* 29, 79–85 (2010).
- Marelli, A., Miller, S. P., Marino, B. S., Jefferson, A. L. & Newburger, J. W. Brain in congenital heart disease across the lifespan: the cumulative burden of injury. *Circulation* 133, 1951–1962 (2016).
- von Rhein, M. *et al.* Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. *Brain* 137, 268–276 (2014).
- 15. Areias, M. E. *et al.* Neurocognitive profiles in adolescents and young adults with congenital heart disease. *Revista portuguesa de cardiologia* 37, 923–931 (2018).
- 16. Cassidy, A. R., Newburger, J. W. & Bellinger, D. C. Learning and memory in adolescents with critical biventricular congenital heart disease. *J. Int. Neuropsychol. Soc.* 23, 627–639 (2017).
- 17. DeMaso, D. R. *et al.* Psychiatric disorders in adolescents with single ventricle congenital heart disease. *Pediatrics* 139 (2017).
- 18. Tran, D. *et al.* Recommendations for exercise in adolescents and adults with congenital heart disease. *Prog. cardiovascular diseases* 63, 350–366 (2020).
- **19.** Niebauer, J. *et al.* Recommendations for participation in competitive sports of athletes with arterial hypertension: a position statement from the sports cardiology section of the european association of preventive cardiology (eapc). *Eur. Hear. J.* **39**, 3664–3671 (2018).
- **20.** Jefferson, A. L. *et al.* Low cardiac index is associated with incident dementia and alzheimer disease: the framingham heart study. *Circulation* **131**, 1333–1339 (2015).
- **21.** Calderon, J. & Bellinger, D. C. Executive function deficits in congenital heart disease: why is intervention important? *Cardiol. Young* **25**, 1238–1246 (2015).
- 22. McCusker, C. G. *et al.* A randomized controlled trial of interventions to promote adjustment in children with congenital heart disease entering school and their families. *J. pediatric psychology* **37**, 1089–1103 (2012).
- **23.** Klingberg, T. *et al.* Computerized training of working memory in children with adhd-a randomized, controlled trial. *J. Am. Acad. child & adolescent psychiatry* **44**, 177–186 (2005).
- 24. Diamond, A. & Lee, K. Interventions shown to aid executive function development in children 4 to 12 years old. *Science* 333, 959–964 (2011).
- **25.** Williams, I. A. *et al.* Fetal cerebrovascular resistance and neonatal eeg predict 18-month neurodevelopmental outcome in infants with congenital heart disease. *Ultrasound obstetrics & gynecology* **40**, 304–309 (2012).
- **26.** Gaynor, J. W. *et al.* Impact of operative and postoperative factors on neurodevelopmental outcomes after cardiac operations. *The Annals Thorac. Surg.* **102**, 843–849 (2016).
- 27. Gaynor, J. *et al.* International cardiac collaborative on neurodevelopment (iccon) investigators. neurodevelopmental outcomes after cardiac surgery in infancy. *Pediatrics* **135**, 816–25 (2015).
- 28. Hussain, M. A., Li, G., Grant, E. & Ou, Y. Influence of demographic, socio-economic, and brain structural factors on adolescent neurocognition: A correlation analysis in the abcd initiative. *bioRxiv* 2023–02, DOI: https://doi.org/10.1101/2023.02.24.529930 (2023).
- Liamlahi, R. & Latal, B. Neurodevelopmental outcome of children with congenital heart disease. *Handb. Clin. Neurol.* 162, 329–345 (2019).
- **30.** Urschel, S. *et al.* Neurocognitive outcomes after heart transplantation in early childhood. *The J. Hear. Lung Transplantation* **37**, 740–748 (2018).

- **31.** Sterling, L. H. *et al.* Neurocognitive disorders amongst patients with congenital heart disease undergoing procedures in childhood. *Int. J. Cardiol.* **336**, 47–53 (2021).
- 32. Skotting, M. B. et al. Infants with congenital heart defects have reduced brain volumes. Sci. Reports 11, 4191 (2021).
- **33.** Kessler, N. *et al.* Structural brain abnormalities in adults with congenital heart disease: Prevalence and association with estimated intelligence quotient. *Int. journal cardiology* **306**, 61–66 (2020).
- 34. Bolduc, M.-E., Lambert, H., Ganeshamoorthy, S. & Brossard-Racine, M. Structural brain abnormalities in adolescents and young adults with congenital heart defect: a systematic review. *Dev. Medicine & Child Neurol.* 60, 1209–1224 (2018).
- 35. Asschenfeldt, B. *et al.* Neuropsychological status and structural brain imaging in adults with simple congenital heart defects closed in childhood. *J. Am. Hear. Assoc.* 9, e015843 (2020).
- 36. Oster, M. E., Watkins, S., Hill, K. D., Knight, J. H. & Meyer, R. E. Academic outcomes in children with congenital heart defects: a population-based cohort study. *Circ. Cardiovasc. Qual. Outcomes* 10, e003074 (2017).
- 37. Savory, K., Manivannan, S., Zaben, M., Uzun, O. & Syed, Y. A. Impact of copy number variation on human neurocognitive deficits and congenital heart defects: A systematic review. *Neurosci. & Biobehav. Rev.* 108, 83–93 (2020).
- **38.** Derridj, N. *et al.* Long-term neurodevelopmental outcomes of children with congenital heart defects. *The J. Pediatr.* **237**, 109–114 (2021).
- **39.** Lankalapalli, R. *et al.* Accelerated brain aging in congenital heart disease and relation to neurodevelopmental outcome. In 60th Annual Meeting of the American Society of Neuroradiology (ASNR, 2022).
- **40.** He, S. *et al.* Multi-channel attention-fusion neural network for brain age estimation: Accuracy, generality, and interpretation with 16,705 healthy mris across lifespan. *Med. image analysis* **72**, 102091 (2021).
- **41.** Kotu, V. & Deshpande, B. Chapter 4 classification. In Kotu, V. & Deshpande, B. (eds.) *Data Science (Second Edition)*, 65–163, DOI: https://doi.org/10.1016/B978-0-12-814761-0.00004-6 (Morgan Kaufmann, 2019), second edition edn.
- **42.** Hussain, M. A., Grant, E. & Ou, Y. Inferring neurocognition and intelligence using brain mri. *Preprints* DOI: https://doi.org/10.20944/preprints202302.0452.v1 (2023).
- **43.** Hussain, M. A., LaMay, D., Grant, E. & Ou, Y. Can deep learning predict human intelligence from structural brain mri? *bioRxiv* 2023–02, DOI: https://doi.org/10.1101/2023.02.24.529924 (2023).
- 44. Richter, M. L. et al. (input) size matters for cnn classifiers. In Artificial Neural Networks and Machine Learning– ICANN 2021: 30th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part II 30, 133–144 (Springer, 2021).
- **45.** Yang, J.-J. *et al.* Prediction for human intelligence using morphometric characteristics of cortical surface: partial least square analysis. *Neuroscience* **246**, 351–361 (2013).
- 46. Wang, L., Wee, C.-Y., Suk, H.-I., Tang, X. & Shen, D. MRI-based intelligence quotient (IQ) estimation with sparse learning. *PloS one* 10, e0117295 (2015).
- Choi, Y. Y. *et al.* Multiple bases of human intelligence revealed by cortical thickness and neural activation. *J. Neurosci.* 28, 10323–10329 (2008).

Acknowledgements

This work is supported by the American Heart Association grant (No. 919799).