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Abstract—Three-dimensional ultrasound has been increasingly considered as a safe radiation-free alternative to
radiation-based fluoroscopic imaging for surgical guidance during computer-assisted orthopedic interventions,
but because ultrasound images contain significant artifacts, it is challenging to automatically extract bone surfaces
from these images.We propose an effective way to extract 3-D bone surfaces using a surface growing approach that
is seeded from 2-D bone contours. The initial 2-D bone contours are estimated from a combination of ultrasound
strain images and envelope power images. Novel features of the proposed method include: (i) improvement of a
previously reported 2-D strain imaging-based bone segmentation method by incorporation of a depth-
dependent cumulative power of the envelope into the elastographic data; (ii) incorporation of an echo decorrela-
tion measure-based weight to fuse the strain and envelope maps; (iii) use of local statistics of the bone surface
candidate points to detect the presence of any bone discontinuity; and (iv) an extension of our 2-D bone contour
into a 3-D bone surface by use of an effective surface growing approach. Our new method produced average im-
provements in the mean absolute error of 18% and 23%, respectively, on 2-D and 3-D experimental phantom data,
compared with those of two state-of-the-art bone segmentation methods. Validation on 2-D and 3-D clinical in vivo
data also reveals, respectively, an average improvement in the mean absolute fitting error of 55% and an 18-fold
improvement in the computation time. (E-mail: arafat@ece.ubc.ca) � 2016World Federation for Ultrasound in
Medicine & Biology.
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INTRODUCTION

Navigation systems in orthopedic surgery procedures
often rely on intra-operative fluoroscopy for registering
pre-operatively acquired models (e.g., from computed to-
mography [CT] imaging) with the intra-operative anat-
omy. However, the associated radiation poses potential
hazards to both the surgical staff and patients (Park
et al. 2012). Over the past decade or so, intra-operative ul-
trasound (US) has been proposed as a safer alternative
(Amin et al. 2003; Brendel et al. 2002; Brounstein et al.
2011; Chen et al. 2005; Foroughi et al. 2007;
Hacihaliloglu et al. 2008, 2011). However, because of
the very low signal-to-noise ratio (SNR), US images are
comparatively difficult to interpret (Krissian et al.
2007). Typically, US beams strongly reflect from stiffer
tissue surfaces such as bones, so these surfaces appear
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as bright ridge-like shapes in US images. However, other
tissue layers can also produce similar intensity profiles, so
it can be difficult to automatically distinguish between
bone and soft tissue boundaries (Hussain et al. 2014),
which would be necessary if US-based bone surface
localization is to be used in practical intra-operative
applications.

Over the last two decades, a number of
semi-automatic and automatic methods for bone segmen-
tation in US were developed based on morphologic fea-
tures (Stindel et al. 2002; Tonetti et al. 2001), image
gradients (Barratt et al. 2006; Daanen et al. 2004; Kowal
et al. 2007), and active shape models (Alfiansyah et al.
2006; Jain and Taylor 2004). However, results were
strongly affected by the high levels of speckle noise,
reverberation, anisotropy, and signal dropout that occur
in US images (Hacihaliloglu et al. 2012a, 2014).
Dynamic programming-based methods (Foroughi et al.
2007; Patwardhan et al. 2012) also appear promising, but
were reported to be time inefficient; for example, the
method of Patwardhan et al. (2012), which was
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implemented in C11, took �5 min to extract 3-D bone
surfaces in an US volume of 200 3 100 3 100 voxels.
More recently, work on using phase-based features for
US bone segmentation by Hacihaliloglu et al. (2008,
2011, 2012a, 2012b) has successfully addressed some of
the major limitations of the previously reported methods.

Hacihaliloglu et al. used a log Gabor filtering-based
ridge detection approach to delineate bone in US images.
This method used filters responsive to the angular orien-
tations of bone found in the US images. Because soft tis-
sue interfaces near the transducer face often exhibit
intensity profiles similar to those of bone and frequently
have similar angular orientations, this approach can occa-
sionally produce false-positive responses (Hussain et al.
2014). The authors attempted to address this issue by
adopting bottom-up ray casting (based on the assumption
that the bone interface would be the deepest strong inter-
face in the volume set), along with manual image crop-
ping, but this approach may not be reliable or practical
in a surgical environment. In addition, phase-based
methods may also fail to extract bone boundaries in pla-
ces where B-mode intensities are not sufficiently strong
(e.g., in places where the bone surface is not perpendic-
ular to the US beam direction).

An alternative approach would be to exploit detec-
tion of the high mechanical stiffness of bone using US
elastography (Hussain et al. 2014; Xu and Salcudean
2007). Xu and Salcudean (2007) were the first group to
use US elastography to delineate bone surfaces in US im-
ages. However, their strain imaging-based method pro-
duced low contrast in the bone surface region, so the
bone surface could not be accurately located. More
recently, we proposed an improved method (Hussain
et al. 2014) that employs real-time strain imaging to esti-
mate the bone boundary using a tissue stiffness map. This
approach enabled us to accurately estimate the location of
the bone surface (within 0.75 mm on a phantom spec-
imen). In short, the steps of our previous work were: (i)
producing strain and envelope power maps using the
raw radiofrequency (RF) data, (ii) fusing the strain and en-
velope power maps using an empirically chosen weight
and (iii) producing final bone contours by linear regres-
sion over the maximum intensity points along each scan
line in the fused map. However, this method is highly sen-
sitive to the quality of the strain image, and relies on a
manually defined weight that controls the relative contri-
bution of the strain image in the bone boundary detection
procedure. It also lacks the ability to detect bone disconti-
nuities, and accurate delineation of the final bone surface
is sensitive to the proper choice of the window length for
local linear regression. In addition, this method was only
able to detect the bone surfaces in 2-D US images.

In the study described here, we significantly
enhanced our previous work by (i) incorporating a
depth-dependent cumulative power of the envelope
metric into both pre- and post-compression raw RF data
before estimating the strain map, (ii) incorporating an
echo decorrelation metric to choose a weight automati-
cally that fuses the strain and envelope power maps and
(iii) using a local statistics-based bone discontinuity
detection scheme. In addition, we propose a 3-D bone
segmentation approach for US that uses the estimated
2-D strain to identify a seed bone contour that is then
grown in the elevation direction by minimizing a com-
bined intensity similarity and a voxel proximity-based
cost function. The performance of this algorithm is eval-
uated using a finite-element model (FEM) phantom, an
experimental phantom and in vivo data, and is compared
with the performance of two recent image phase feature-
based bone boundary estimation algorithms.

METHOD

Our proposed strain enhancement method has three
major components, as illustrated in Figure 1: (i) a custom-
ized scanning procedure, (ii) 2-D bone contour estimation
procedure and (iii) 3-D bone surface extraction procedure
using the surface growing approach.

Scanning procedure
Our algorithm combines a 2-D elastographic image

with a standard 3-D B-mode volumetric scan. These im-
ages are acquired in two steps: (i) acquisition of 2-D pre-
and post-compression RF frames, I1 and I2, respectively,
(of size m 3 n), where the US beam direction is nomi-
nally perpendicular to the bone surface, and (2) acquisi-
tion of 3-D US RF data (consisting of z frames) as the
transducer sweeps over the target. To implement this
approach, we use a 4-D linear array transducer that
initially collects a number of 2-D US RF frames
(axial 3 lateral) with freehand compression while the
transducer array is positioned in the middle of its sweep
(i.e., in the probe’s central plane). Once we are satisfied
with the quality of the elastography data, we begin
acquiring the 3-D US data by switching the transducer
to the sweeping mode without removing it from the
skin surface. The transducer sweeps in the elevation di-
rection and acquires a volume. Note that we presume
that the person performing the scan has sufficient experi-
ence to decide if the acquired images are of sufficient
quality to produce an acceptable strain image.

2-D bone contour estimation

Background. To estimate the bone surface location
in the pair of 2-D images, we used a real-time strain im-
aging technique developed by Rivaz et al. (2011), which
is based on an analytic minimization of a regularized cost
function defined as (pseudo-equation)



Fig. 1. Schematic indicating different components of our proposed method.
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cost5 intensity similarity 1 displacement regularization

(1)

The resulting strain image was fused with the enve-
lope power map using a weight. The weight was selected
based on an empirical analysis of the mean absolute error
(MAE) between the actual and estimated bone surfaces
for different weight values. The weight for which the
MAE was lowest in this pilot data set was used
throughout our experiments. Then we used local linear
fits over the maximum intensity point along each scan
line of the fused map to produce the final bone boundary.
However, Rivaz et al. also mentioned an inherent limita-
tion of their method: Weaker RF echoes cause a signifi-
cant increase in the share of the regularization term in
eqn (1), which results in oversmoothing of the strain im-
age. In our work, we exploited this phenomenon to
improve the bone delineation accuracy, as discussed in
the next section.
Fig. 2. (a) Simulated envelope map. (b) Axially cumulative e
envelope map in (a) by the powe
2-D strain and envelope power map estimation. The
work described here was focused on improving bone
detection accuracy by improving the performance of
strain and envelope power estimates. We devised a modi-
fication process for the raw RF data, which is used before
estimating the strain map (see Fig. 1). Because the RF
echoes and their envelopes are already weaker beneath
the bone surface because of the very high US beam reflec-
tion at the bone–soft tissue interface (a simulated example
is provided in Fig. 2a), we further modified the envelope
map by reducing the intensity associated with the soft tis-
sue region (area between the bone and the transducer face)
using the axially cumulative power (see Fig. 2b) and pro-
duced modified envelope maps (see Fig. 2c), MEM1 and
MEM2 from I1 and I2, respectively, as

MEMrði; jÞ5 Erði; jÞPrði;jÞ

max
h
Erði; jÞPrði;jÞ

i (2)
nvelope power of the map in (a). (c) Modification of the
r map in (b) using eqn (2).
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where r corresponds to 1 and 2, denoting the pre- and
post-compression images, respectively; i and j denote
the axial and lateral sample numbers, respectively; Er is
the envelope of Ir estimated using the Hilbert transform
(Hussain et al. 2012b); and Prði; jÞ5

Pi
po 5 1E

2
r ðpo; jÞ.

Finally, we estimate strain (S) from the pre- and post-
compression data pair MEM1 and MEM2 using the
method developed by Rivaz et al. (2011). Consequently,
an oversmoothing of both the top and bottom regions of
the bone boundary in the resulting strain image occurs
for the same reason discussed in the previous section
(see the modified strain map in the midblock of Fig. 1).
For robust bone boundary estimation, we further combine
S with MEM1. Because of the echo de-correlation in the
freehand elastography, strain images often become very
noisy. On the other hand, the envelope magnitude of the
RF data is generally expected to be higher over the
bone surfaces, but this is often not the case where the
bone surface is not perpendicular to the US beam direc-
tion. Therefore, we combine information from both the
strain and envelope power maps to complement one
another. To ensure that the dynamic range of S is compa-
rable to that ofMEM1, we define a modified strain map by
normalizing S: MSM5 jSj=max½jSj�.
Fused map estimation. Next we fuse the MSM and
MEM1 as

FM5 l3MSM1ð12lÞ3MEM1 (3)

where l controls the contribution of MSM to the fused
map. In our previous work (Hussain et al. 2014), the value
of l was chosen empirically. In this work, we incorporate
the echo decorrelation measure between the pre- and
post-compression RF frames to automatically choose a
suitable value for l. To do this, we first estimate the
normalized cross-correlation ravg for a smaller region
of interest (ROI) closer to the transducer face in the
pre- and post-compression echo frames to estimate the
degree of echo decorrelation present between them. Typi-
cally, it is assumed that the post-compression RF signal is
a compressed and time-delayed version of the pre-
compression counterpart (Hussain et al. 2012a). We
then stretch the post-compression signals in the ROI by
a varying factor a, that is, Ia(i) 5 I2(ai), and define the
normalized cross-correlation (NCC) ra(k) (#1) as
(Hussain et al. 2012a)

raðkÞ5
PL

i5 1I1ðiÞ$Iaði1kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
i5 1fI1ðiÞg2

PL
i5 1fIaðiÞg2

q (4)

where L is the length of a 1-D signal window, and k is
the shift parameter. Equation (4) becomes maximum for
that particular value of a for which the
post-compression RF window matches best with its
pre-compression counterpart. After estimating ra(k)
for all the scan lines inside the ROI, the mean NCC
peak is estimated as

ravg 5
1

M

XM
w5 1

maxfraðkÞgw (5)

whereM is the total number of 1-D signal windows inside
the ROI. Because we want the weight l to be determined
by features of the image, we define it as

l5

8<
:

a if ravg$0:9
b
�
ravg2a

�
if 0:5#ravg,0:9

0 if ravg,0:5
(6)

where a5 0.5 and b5 5/4, which are chosen such that the
linear weight l (proportional to the echo decorrelation) is
clipped at ravg 5 0.5 and ravg 5 0.9. We choose these
threshold values because echo decorrelation between
the pre- and post-compression echo frames is signifi-
cantly lower when ravg is $0.9 (Zahiri-Azar and
Salcudean 2006). On the other hand, if ravg is ,0.5, it
is obvious that the degree of echo de-correlation is greater
than the correlation (Hussain et al. 2015). After esti-
mating the FM, the location of the maximum intensity
point along each scan line of the FM is used as the initial
bone surface point estimateY(5[y1,y2,.,yn]), where yj is
the axial sample number at jth scan line in the FM. We
also use Grubbs’ test (Nass et al. 2013) to discard any
outlier bone candidate point yj in Y.

Single-slice bone detection. To detect a disconti-
nuity in the bone surface, we estimate the least-squares
error-based gradient VY. We assume that the gradient
values VY are normally distributed with mean mVY and
standard deviation sVY. Then we determine if any gradient
value is too high by comparing it with the confidence in-
terval of mVY1 3sVY. The locations whereVYexceeds the
confidence interval of mVY 1 3sVY are considered the lo-
cations of bone discontinuities. After the discontinuity
localization, each continuous portion of points in Y is
considered as a separate segment, and we use Gaussian
mixture regression (GMR) over each of the segments
separately. If fX;Yðx; yÞ5

PK
q5 1pqfðx; y;mq;SqÞ is the

joint density function of bone indicating points in a
particular segment of the FM, where K is the total number
of clusters present in that segment (K is estimated from
spectral clustering [Zelnik-Manor and Perona 2005]),
pq, mq 5 [mqX;mqY] and Sq 5 ½SqXSqXY ;SqYXSqYY � are
the probability, mean and covariance matrix, respectively,
of the data points in the qth cluster, which are estimated
using the expectation maximization algorithm (Cohn
et al. 1996). In addition, fðx; y;mq;SqÞ is the probability
density function of points inside the qth cluster defined as
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f
�
x; y;mq;Sq

�
5

1

2p
ffiffiffiffiffiffiffiffi��Sqj

q exp

�
2
1

2

�
D2mq

�T
P21

q ðD2mqÞ
�

whereD5[X;Y]. Then, from fX,Y(x,y), our GMR equation
can be derived (Sung, 2004),

bðxÞ5E½YjX5 x�5
XK
q5 1

wqðxÞdqðxÞ (8)

where b contains the new bone surface points, dq(x) 5
mqY 1

P
qYX

P
qX

21(x2mqX), and mqX and SqX are the
mean and covariance matrix of the marginal density func-
tion (fX) ofX, in the qth data cluster. An example plot of b
is illustrated in Figure 1 as the ‘‘seed bone contour.’’ In
addition, wj(x) is the mixing weight defined as

wqðxÞ5
pqf

�
x;mqX;SqX

�
PK

q5 1pqf
�
x;mqX;SqX

� (9)
Eiði; jo; ko61Þ5 12
�bBði; jo; ko61Þ2mt

	2
2
�bBði; jo; ko61Þ2mb

	2
max

�
12

�bBði; jo; ko61Þ2mt

	2
2
�bBði; jo; ko61Þ2mb

	2	 (12)
3-D bone surface extraction using surface growing
Having identified a seed contour in the 2-D elasto-

graphic image, we next use a surface growing approach
to extend this contour laterally through the 3-D volume
set. Before doing this, we pre-process the 3-D B-mode
(B) image to highlight the bone intensities relative to
the soft tissues. To do this, we estimate the axially cumu-
lative sum of intensities for each voxel as
Pði; j; kÞ5Pi

po 5 1Bðpo; j; kÞ2, where k denotes the voxel
index in the elevation direction. Using P(i,j,k), we esti-
mate the modified B-mode volume as

bBði; j; kÞ5 Bði; j; kÞPði;j;kÞ

max
h
Bði; j; kÞPði;j;kÞ

i (10)

We assume that the 2-D seed points bo(io,jo,ko)
correspond to voxels at (io,jo,z/2), where ko z z/2. Also
note that bo directly corresponds to b in eqn (8). Then
the bone surface expands framewise along the elevation
direction by seeking the depth index in each column of
the adjacent frames that minimizes the cost function
defined by

Cði; jo; ko61Þ5
Xjo1Ly

jv 5 jo2Ly

½Eiði; jo; ko61Þ1kEsði; jo; ko61Þ�

3e2jjo2jvj

(11)

where Ei and Es are the energy functions associated
with the new candidate voxel, k is the mixing weight
and Ly is the number of nearest-neighbor lateral voxels.
The energy term Ei ensures that the new bone surface
voxel at (jo,ko61) carries the highest intensity value
among the voxels in the interrogated scan line, and is
defined as
where

mt 5
1

it21

Xit21

a5 1
bBði; jo; ko61Þ

mb 5
1

m2ib

Xm

a5 ib11
bBði; jo; ko61Þ

and [it,ib] is the axial search range for a new surface
candidate centered at io. In addition, the energy function
Es ensures a smooth transition between the seed and new
candidate voxel, and is defined as

Esði; jo; ko61Þ5 ðjVij=jVitjÞ2
max

�ðjVij=jVitjÞ2	 (13)

where Vi5 io2i and Vit5 io2it. Finally, we estimate the
location of a new bone surface voxel from eqn (11) for the
frame at ko61 as

iojko61 5 argmin
i

fCði; jo; ko61Þg (14)
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Weupdate iojko6f as the new seed voxel, proceed to the
next frame at ko6(f11), where f 5 1,2,3., and continue
growing until min[C] rises to a value that makes it unlikely
that the next voxel still represents bone. In our analyses,
we set this threshold empirically at a value of 0.8 because
we have found that the US bone intensity is too weak to
rely on beyond this value; we plan to revisit this choice in
the future to base it on a measured property of the image
(e.g., average bone intensity). We also store the axial loca-
tions of the seed contours b (from eqn [8]) as well as the
new surface points (from eqn [14]) in a 2-D matrix Best.
Validation setup

FEM simulation. To validate our proposed approach,
we built a 403 40-mm (axial3 lateral) FEM phantom us-
ing the analysis software ANSYS (ANSYS, Canonsburg,
PA, USA) and the ultrasound simulation software Field II
(Jensen 1996). The phantom mimicked 2-D US scans of a
fractured human distal radius bone with a total number of
55,180 nodes. The stiffness values of the homogeneous
soft tissue and bone regions were set to 10 kPa and
10 GPa, respectively (Fig. 3), based on a previous related
study (Pistoia et al. 2002). Our phantom was compressed
in the axial direction from the top using a planar compressor
that was wider than the phantom. We simulated an applied
pressure level that corresponds to 1%average strain because
we have observed in scans of human tissue that there is sig-
nificant echo decorrelation at strain values beyond this
amount (Hussain et al. 2012b). An ultrasonic transducer
of center frequency, f0 5 5 MHz and bandwidth 5 50%
was used to simulate the phantom scan from the top. The to-
tal number of scan lines was set to 128. The resulting pixel
size of the 2-D data was 0.0153 0.3mm. Figure 3(b) is the
simulated elastogram at 1% applied strain. Note that we
created this phantom toanalyze the performance of different
2-D bone boundary estimation methods only.
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Fig. 3. Finite-element model (FEM) simulation phantom. (a)
Model of a fractured distal radius bone and soft tissue region
of stiffness 10 GPa and 10 kPa, respectively. (b) Corresponding

simulated elastogram.
Experimental phantom. We also constructed an
experimental phantom using a radiopaque Sawbones
hemipelvis (Sawbones, Pacific Research Laboratories,
Vashon Island, WA, USA, Model 1297-22). A portion
of the pelvis was suspended in polyvinyl chloride
(PVC) gel (Fig. 4a) and placed in an acrylic tube
(Fig. 4b). A high-resolution peripheral quantitative CT
machine (Model HR pQCT Xtreme CT, Scanco USA,
Wayne, PA, USA) was used to acquire a single
4823 4823 402 (lateral3 axial3 elevation) voxel vol-
umewith a resolution of 0.253 0.253 0.25 mm. The US
images were acquired using a SonixRP (Ultrasonix Med-
ical, Richmond, BC, Canada) scanner in the Center for
Hip Health and Mobility, Vancouver Coastal Health Au-
thority, Vancouver, BC, Canada. We used a L14-5/60
linear array probe operating at 10 MHz and a 4 DL14-
5/38 linear 4-D array probe operating at 5 MHz to collect
data for the 2-D and 3-D implementations, respectively.

In vivo data. Finally, we acquired eight sets of in vivo
US data, five of which were acquired for 2-D evaluations
from five volunteers (volunteer I: 25-y-oldman, volunteer
II: 33-y-old man, volunteer III: 26-y-old man, volunteer
IV: 24-y-old man, volunteer V: 27-y-old man), and three
sets of data were acquired for 3-D evaluations from three
volunteers (volunteer VI: 27-y-old man, volunteer VII:
26-y-old man, volunteer VIII: 29-y-old man) after obtain-
ing informed consent. All data were acquired with free-
hand compression. The US images were acquired using
a SonixRP (Ultrasonix Medical) scanner in the Center
for Hip Health and Mobility, Vancouver Coastal Health
Authority. Here also, we used a L14-5/60 linear array
probe operating at 10 MHz and a 4DL14-5/38 linear 4-
D array probe operating at 5 MHz to collect data for the
2-D and 3-D implementations, respectively. The study
was approved by the UBC clinical research ethics board.

Data analysis
We provide comparative results of our proposed 2-D

and 3-D strain enhancement (2DSE and 3DSE) methods
with the previously reported adaptively parameterized
(‘‘optimized’’) phase symmetry methods in both two and
three dimensions (2DOPS and 3DOPS [Hacihaliloglu
et al. 2011 and 2014, respectively]). Note that the 2DSE
method refers only to what we proposed in under 2-D
Bone Contour Estimation, but the 3DSE method com-
bines methods described under both 2-D Bone Contour
Estimation and 3-D Bone Surface Extraction Using Sur-
faceGrowing. The 2DOPS and 3DOPSmethods select pa-
rameters automatically for the log-Gabor filters based on
properties estimated directly from the specific US image
that is being analyzed, as described in Hacihaliloglu
et al. (2011, 2014). Because the FEM and physical
phantoms do not contain any soft tissue layers above the
bone surface, we illustrate the effect of using the depth-
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Fig. 4. Experimental physical phantom. (a) The phantomwas created using a Sawbones radiopaque hemipelvis, cut along
red line. (b) The separated portion (indicated by the red arrow in a) of the pelvis is embedded in polyvinyl chloride gel.
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dependent cumulative power, data-driven weight and
GMR in terms of the mean absolute fitting error
(MAFE) only for the in vivo data. For the FEM and phys-
ical phantoms, we calculate the mean absolute error
(MAE) relative to a reference bone boundary using

MAE5
1

P3Q

XP
p5 1

XQ
q5 1

��Brefðp; qÞ2Bestðp; qÞ
�� (15)
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the in vivo data. We use fiducial-based CT and US bone
alignment before estimating the MAE for the experi-
mental phantom. Note that we use bottom-up ray casting
in the phase symmetry images for the 2DOPS and 3DOPS
methods to get Best, as suggested in Hacihaliloglu et al.
(2011, 2014). Also note that because we use expert
delineated bone contours as ground truth for the in vivo
data, the estimated error using eqn (15) for the in vivo
data is more properly considered to be the mean absolute
fitting error (MAFE). In our surface growing technique,
we set Vitz 5 mm, Ly 5 3 and k 5 0.5.
RESULTS

Validation on the FEM phantom data
Figure 5 illustrates a comparison of the 2DSE and

2DOPS algorithms when applied to the FEM phantom.
In Figure 5(a–d), we have the B-mode, estimated strain
S, MEM1 and fused maps, respectively. In Figure 5(e),
we have the bone boundaries detected by the 2DSE
method. In addition, we have the bone boundaries de-
tected by the 2DOPS method in Figure 5(f). Note that
because the FEM and experimental phantom data by
default contain no different tissue layers in the soft tissue
Fig. 6. Two-dimensional bone boundary detection using the
generated by the proposed approach. (c) MEM1. (d) Gaussian m
points in the fused map. (e) Bone boundary estimated with the 2
ary estimated with the 2-D optimized phase symmetry (2DOP

shown after bottom-u
region, the estimated bone boundaries by the 2DOPS
method have very few false positives. However, as the
2DOPSmethod depends on ray casting to extract the final
bone boundary from the phase symmetry images, these
methods become vulnerable to ‘‘leaking’’ through weak
areas in the phase symmetry profiles, as is evident in
Figure 5(f) (indicated by yellow arrows). In contrast,
the bone boundaries produced by the 2DSE method
(Fig. 5e) appear to be free of such artifacts.

Validation on the physical phantom data

Qualitative performance comparison. Figure 6 illus-
trates the qualitative performance comparison of the
2DSE and 2DOPS methods using the experimental phan-
tom. In Figure 6(a–d) are the B-mode image, strain im-
age, MEM1, and fused map, respectively. The detected
bone boundaries by the 2DSE and 2DOPS methods are
in Figure 6(e and f, respectively). We can see from
Figure 6(f) that the final bone boundary estimated by
the 2DOPS method is somewhat noisy, though a GMR
operation on these points might produce a smooth con-
tour as with the 2DSE method (Fig. 6f). But we see in
Figure 7 for the 3DOPS method that the ray casting leaks
through weak spots (indicated by white arrows) in the
physical phantom. (a) B-Mode image. (b) Strain image
ixture (GM) representation over the maximum intensity
-D strain enhancement (2DSE) method. (f) Bone bound-
S) method (Hacihaliloglu et al. 2011) (bone boundary is
p ray casting).
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Fig. 7. Three-dimensional bone surface detection using the physical phantom. (a) B-Mode image. (b) Three-dimensional
phase symmetry image estimated with the 3-D optimized phase symmetry (3DOPS) method (Hacihaliloglu et al. 2014).
(c) Bone surface after bottom-up ray casting in (b) (arrows indicate leakage). (d) Bone surface estimated with the 3-D

strain enhancement (3DSE) method.
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3-D phase symmetry image. Although for the sake of
clarity, we do not indicate the false positives on top of
the bone surface resulting from leaking, such false posi-
tives may be difficult to identify and reject automatically
in intra-operative applications. In contrast, the bone sur-
face estimated by the 3DSE has no leaking effect
(Fig. 7d).

Quantitative performance comparison. We also
compared the quantitative performance on the phantom
data between the OPS and SE methods in both two and
three dimensions. There were average decreases in the
MAE of 18% and 23%, respectively, for the 2DSE and
3DSE methods compared with their OPS equivalents.
Validation on the in vivo data

Qualitative performance comparison. First, we
compared the bone boundary detection performance of
the 2DSE and 2DOPS methods using the in vivo data.
The scanned bone regions on the anatomies and the
B-mode images of volunteers I–V are provided in
Figure 8(a–e) and Figure 8(u–y), respectively. An ortho-
pedic surgeon delineated the bone boundaries on the B-
mode images (Fig. 8u–y), which we treat as ground
truths for comparing the 2DSE and 2DOPS methods.
We see from Figure 8(u–y) that the bone boundary pro-
duced by the 2DOPS method varies noticeably in some
places. This variation results from the false-positive
bone responses. In contrast, in all five cases, the bone
boundaries estimated by the 2DSE method better match
the shapes as marked by the expert in the corresponding
B-mode images (Fig. 8u–y). In addition, the 2DSE
method does not produce false positives at soft tissue
interfaces.

We also illustrate the bone surface detection perfor-
mance of the 3DSE and 3DOPS methods in Figure 9. We
see in Figure 9(g–i) that the 3DOPS method can produce
false-positive responses at various soft tissue interfaces
(indicated by white arrows). We also see in Figure 9(j–
l) that the ray casting results in leaks through weak re-
sponses on the bone surface and instead detects false-
positive soft tissue interfaces (indicated by corresponding
white arrows in Fig. 9g–l). In contrast, in all three cases,
the bone surfaces estimated by the 3DSE method better
match the shapes visible in the corresponding B-mode
images (Fig. 9d–f, m–o). In addition, the 3DSE method
successfully extracts bone surfaces that are not perpen-
dicular to the US beam direction (indicated by the corre-
sponding green arrows in Fig. 9d, f, m, o). In contrast, the
3DOPSmethod fails to extract these curved bone regions.
Note that the in vivo data we used in this study have bone
surfaces located at reasonably shallow depths (within �
3 cm of the surface). However, in principle, our technique
should work for deeper bones provided that the surface is
satisfactorily visualized in the B-mode images.

Quantitative performance comparison.We illustrate
a quantitative performance comparison between the
2DSE and 2DOPS methods in terms of MAFE in
Figure 10(a). The MAFE values produced by the 2DSE
method are lower (approximately 55%) than those of
the typical 2DOPS (with only ray casting) method for
all five volunteer data sets. We also estimate the MAFE
for the ray-cast surface points after GMR. Although
GMR reduces the error significantly, the errors with
2DSE are even lower (by 0.15 mm on average). In addi-
tion to the MAFE, we also analyze the distributions of the
estimated bone boundary points by the 2DOPS (without
GMR) and 2DSE methods with respect to the expert-
delineated bone contours. We perform an F test on the
variances of the distributions produced by the 2DOPS
and 2DSE methods, as outlined in Table 1. We see in
this table that F . F Critical, one-tailed, which rejects
the null hypothesis: variances for the 2DOPS and 2DSE
methods are equal. Thus, the variance for the 2DOPS
method is greater than that of the 2DSE method. We
also illustrate the quantitative performance comparison
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Fig. 8. Two-dimensional bone boundary detection using the in vivo data. (a–e) Bone regions scanned on each volunteer
(with red rectangles). (f–j) Strain images generated by the proposed approach. (k–o) MEM1. (p–t) Fused maps with the
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enhancement (2DSE) methods are overlaid on the respective B-mode images for volunteers I to V (bone boundaries pro-

duced by the 2DOPS method are shown after bottom-up ray casting).

Strain-initialized robust bone surface detection d M. A. HUSSAIN et al. 657
between the 3DSE and 3DOPS methods in terms of
computation time in Figure 10(b). The MATLAB (The
MathWorks, Natick, MA, USA) execution times for the
3DSE method running on an Intel(R) Xeon(R) CPU E3
@ 3.20 GHz with 8 GB of memory are approximately
18 times smaller than those of the 3DOPS method for
all three 3-D in vivo data sets.

Finally, we illustrate the individual effect of us-
ing the depth-dependent cumulative power, data-
driven weight and GMR in terms of MAFE using
the in vivo data in Figure 11. Because we enhanced
our previous work (Hussain et al. 2014), namely, the
strain and envelope power-based method (SEP), we
illustrate the effects of the proposed enhancements
with the SEP method. To illustrate the effect of using
the depth-dependent cumulative power, we choose a
pair of pre- and post-compression RF frames having
satisfactory correlation (i.e., ravg z 0.90) and use
simple linear regression for both the 2DSE and SEP
methods (Fig. 11a). We see that the depth-dependent
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cumulative power reduces the MAFE for the 2DSE
method by approximately 15% compared with the
SEP method. On the other hand, although we illus-
trate the effect of using a value for l determined by
the degree of correlation, we do not use the depth-
dependent cumulative power and use simple linear
regression for both the 2DSE and SEP methods
(Fig. 11b, c). Here we see that the use of l(ravg) re-
duces the MAFE for the 2DSE method by approxi-
Fig. 10. (a) Mean absolute fitting error (MAFE, mm) analysis f
optimized phase symmetry (2DOPS) methods. (b) Computation

and 3DOPS methods using the in vivo data. In (b), the 3-
mately 20% compared with the SEP method.
Finally, to illustrate the effect of using the GMR,
we use GMR and linear regression separately for the
2DSE method (Fig. 11d). We see that the use of
GMR reduces the MAFE for the 2DSE method by
approximately 16% compared with the SEP method.
We therefore conclude that all three aspects of the
method contribute significantly to reducing error,
with the use of l(ravg) having the greatest impact.
or the proposed 2-D strain enhancement (2DSE) and 2-D
time (sec) performance comparisons between the 3DSE

D image volume size was 364 3 110 3 50 voxels.



Table 1. F test on the variances of the estimated bone
boundary points with respect to the expert delineated

bone contours

Source 2DOPS method 2DSE method

Mean 5.118 0.896
Variance 8.36967 0.72568
Observations 5 5
Degrees of freedom 4 4
F 11.5336
P (F # f), one-tailed 0.01808
F critical, one-tailed 6.38823

2DOPS 5 2-D optimized phase symmetry, 2DSE 5 2-D strain
enhancement.

Fig. 11. Mean absolute fitting error (MAFE, mm) analysis
dependent cumulative power (at ravg z 0.90), (b, c) Data-dri

Gaussian mixture regression (G
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DISCUSSION

We have proposed an improved 2-D bone segmenta-
tion method that (i) incorporates a depth-dependent cu-
mulative power of the envelope into the elastographic
data, (ii) uses an automatic weight based on the echo de-
correlation measure between the pre- and post-
compression RF frames to fuse the strain and envelope
power map and (iii) uses a local statistics-based bone
discontinuity detection scheme. (iv) We also extend our
2-D bone contour into a 3-D bone surface by using an
effective surface growing-based approach. Our method
achieved a marked reduction of false-positive bone
reflecting the individual effects of using the (a) depth-
ven weight (at ravg z 0.75 and 0.60, respectively). (d)
MR) on the in vivo data.
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responses at the soft tissue interfaces compared with the
phase symmetry-based state-of-the-art methods. In addi-
tion, our 3-D method was found to be robust in bone seg-
mentation, as well as time efficient, compared with the
state-of-the-art methods. We have illustrated our
improved performance on a wide range of validation
data including the FEM phantom, a physical phantom
and in vivo human data. We have achieved improvements
of approximately 18% on the 2-D physical phantom and
23% on the 3-D physical phantom in terms of MAE
compared with current phase feature-based methods. In
addition, we have achieved an improvement of approxi-
mately 55% on the 2-D in vivo data in terms of MAFE
compared with current phase feature-based state-of-the-
art techniques. We have also performed 3-D bone seg-
mentation on in vivo data approximately 18 times faster
than the current state-of-the-art method.

We anticipate some situations that could potentially
be challenging for our proposed methods:
Non-displaced fractures and small bone defects
Because the 2DSE method identifies any bone

discontinuity before the GMR step, it is possible to effec-
tively identify bone fragments that are displaced relative
to each other by distances of as little as 2–3 pixels. How-
ever, if the fracture is relatively non-displaced, it may not
be detected. In addition, if a typical bone defect is very
small and lies very close to the actual bone surface,
then this defect may be lost during GMR.
Operator dependence in strain imaging
In principle and in practice, our technique can be

sensitive to the skill level of the operator because the
strain images require that the images used to estimate
strain remain substantially coplanar. Although we did
not explicitly evaluate this operator dependence, we did
observe that relatively na€ıve operators (e.g., other lab
members) could quickly be trained to produce satisfac-
tory strain images by adopting either of two very easy ap-
proaches, depending on the capability of the USmachine:

1. Machines that support strain imaging: If a machine
can display both a B-mode image and a corresponding
strain image side-by-side in a single display, the oper-
ator can visually correlate anatomic features (e.g., the
bone surface) between two different images. If an
operator observes a low strain profile along what
they believe to be the actual bone surface, then he or
she can select these images for detailed processing.

2. Machines lacking strain imaging: Our approach can be
applied off-line if the machine does not explicitly sup-
port strain imaging. In this situation, the operator must
pay careful attention during the compression process
to ensure that there are no feature changes during
this process. Although this is technically a source of
operator dependence, we did not observe operators
having any obviously significant difficulties acquiring
acceptable images, but we have not explicitly
measured the size of this effect.
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