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Abstract. Renal cell carcinoma (RCC) is a common malignancy that
accounts for a steadily increasing mortality rate worldwide. Widespread
use of abdominal imaging in recent years, mainly CT and MRI, has signif-
icantly increased the detection rates of such cancers. However, detection
still relies on a laborious manual process based on visual inspection of
2D image slices. In this paper, we propose an image collage based deep
convolutional neural network (CNN) approach for automatic detection of
pathological kidneys containing RCC. Our collage approach overcomes
the absence of slice-wise training labels, enables slice-reshuffling based
data augmentation, and offers favourable training time and performance
compared to 3D CNNs. When validated on clinical CT datasets of 160
patients from the TCIA database, our method classified RCC cases vs.
normal kidneys with 98% accuracy.

1 Introduction

Renal cell carcinomas (RCC) refer to a group of chemotherapy-resistant malig-
nancies [1] that constitutes the most common type of kidney cancer in adults.
Responsible for approximately 90% of cases of kidney cancers, RCCs accounted
for an estimated 61,560 new patients and 14,080 deaths in the United States in
2015 alone [2]. In fact, North America and Europe have recently reported the
highest numbers of new cases of renal tumor in the world [3]. This increased
number of RCC over the past several years has been contributing to a steadily
increasing mortality rate per unit population worldwide [4].

Although some patients with renal tumors present with clinical symptoms
like flank pain, gross haematuria or palpable abdominal mass, the detection rate
of renal tumours has significantly increased due to the widespread use of vari-
ous types of abdominal imaging including ultrasonography, computed tomogra-
phy (CT) and magnetic resonance imaging (MRI). Typically, tumour staging is
accomplished with CT, which allows for assessment of local invasiveness, lymph
node involvement, or other metastases. Nonetheless, more than 50% of RCCs are
currently detected incidentally [4]. This RCC detection is typically carried out by
radiologists through manual observation of abdominal image data. Although a
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good number of studies have been carried out on kidney localization and anatom-
ical analysis [5–9], to the best of our knowledge, there has been no study to date
that focused on automatic discrimination between healthy vs. renal cell carci-
noma kidneys. Such discrimination ability coupled with an automatic kidney
localization procedure would be invaluable during targeted as well as incidental
analysis of kidney health.

Medical image analysis has enjoyed significant performance improvements
through the use of various machine learning (ML) algorithms over the past few
years. Most of these algorithms are fully supervised, requiring a large number of
annotated datasets for model learning and prediction accuracy analysis. Unlike
two dimensional (2D) single- or three-channel data (e.g., gray-scale or color
images), which are most commonly used in computer vision tasks, three dimen-
sional (3D) medical data presents different sets of challenges for ML approaches.
For example, tissue abnormalities such as tumors, cancers, nodules, stones etc.
are most often localized within a small region of anatomy and do not span the
whole image volume. Localization and analysis of abnormal tissue are thus typi-
cally carried out on the 2D image slices. For example, staging of kidney tumors is
done through slice-based tumor analysis and manual boundary tracing. However,
image tags or labels (e.g. healthy, cancerous etc.) are mostly assigned per image
volume or per patient basis. Therefore, all slices of an image are by default labeled
with a single tag, though not all slices may contain the abnormal tissue. This
scenario makes ‘single-instance’ ML approaches, especially deep learning ones
such as convolutional neural networks (CNNs), very difficult to train on the 2D
slices, as the input slice often does not correspond to the assigned volume-based
label. A typical solution for this problem is to use the full 3D image volume as a
single-instance for learning. However, 3D CNNs are considerably more difficult
to train as they contain significantly more parameters and consequently require
many more training samples, necessitate the use of expensive GPUs with very
large memory, and require a lot more time to converge.

An alternative approach to single-instance learning is multiple-instance learn-
ing (MIL) [10]. MIL is a variation on weakly supervised learning wherein the
learner receives a set of labeled bags, or ensembles, each containing multiple
instances. This scenario allows the learner to label a bag with a class even if
some or most of the instances within it are not members of that class. Using
this MIL approach, the objective of our RCC detection application can be for-
mulated such that a labelled bag corresponds to a labeled CT volume, and the
constituting instances within the bag correspond to the CT’s 2D slices, some of
which may contain RCC tumors while many may not. This reformulation allows
us to correctly incorporate volume-based labels within an easy to train 2D slice-
based CNN framework. In the context of deep learning on medical images, the
joint benefits of MIL combined with the classification power of 2D CNNs have
been recently demonstrated in a few applications including mammogram classi-
fication for breast cancer detection [11], identifying anatomical body parts [12],
colon cancer classification based on histopathology images [13], and classifica-
tion of large 2D microscopy images [14]. To the best of our knowledge, such
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an approach has not been implemented specifically on 3D kidney data and a
novel representation of volumetric CT data is necessary in order to extend such
techniques for detection of RCC in CT data.

In this paper, we propose a CNN based kidney classification method that
makes use of a novel collage image representation. The image slices in a 3D
volume are rearranged side-by-side into a virtual extended 2D image slice, which
in turn correctly corresponds to the single available label for that dataset. Our
approach is different from Zhu et al. [11] and Kraus et al. [14] as, instead of
explicitly modelling MIL aggregation as a global pooling layer, we design the
architecture of our CNN to implicitly learn a nonlinear relationship between the
bag labels and feature representation of the encapsulated instances. Compared
to the computationally expensive two stage (i.e. pre-train and boosting stages)
CNN learning procedure adopted by Yan et al. [12], our single collage CNN is
trained end-to-end and effectively performs efficient classification. Xu et al. [13]
took the advantage of a fully supervised classifier (support vector machines)
on the slice-wise labeled data along with an MIL procedure on the rest of the
weekly labeled data. Our proposed collage also allows for data augmentation by
random reshuffling of the locations of axial image slices within the collage; this
augmentation also facilitates the training of the implicit relationship between
bag labels and learn feature representation.

2 Materials and Methods

2.1 Data

Our clinical dataset consisted of 160 kidney scans of 160 patients accessed from
The Cancer Imaging Archive (TCIA) database [15]. We used 80 healthy kidney
samples from 80 patients who had one healthy kidney. The 80 pathological kidney
samples used were from another 80 patient scans. Our dataset had variations in
the scanner types, contrast administration, fields of view, spatial resolutions,
and intensity (Hounsfield unit) ranges. The in-plane pixel size ranged from 0.58
to 1.50 mm and the slice thickness ranged from 1.5 to 5 mm. Of the 80 healthy
and 80 carcinoma scans, we randomly chose 55 cases from each set to use for
training and the remaining 25 for testing. Ground truth kidney RCC labels were
also collected from the TCIA data records.

2.2 Collage Representation of 3D Image Data

Typically, renal tumors grow in different regions of the kidney and are clinically
scored on the basis of their CT slice-based image features such as size, margin
(well-define or ill-defined), composition (solid or cystic), necrosis, growth pattern
(endophytic or exophytic), calcification etc. [16]. Of course not all kidney slices
necessarily contain tumors, nonetheless clinical labels (healthy/pathological) are
normally recorded on a kidney- or a patient-basis. Therefore, it is not possible to
use slice-based inputs in the training of a CNN because the volume-based label is
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Fig. 1. Schematic diagrams showing the non-shuffled (a) 1-channel and (b) 3-channels
2D collage representations of a 3D image volume. (c) An example 1-channel 2D collage
image slice (512× 512 pixel) containing 64 individual (non-shuffled) axial slices (64×64
pixel) of an actual kidney CT volume. The axially top and bottom slices (two corner
slices in (c)) are colored to locate those in the randomly shuffled collages in (d)−(f).

Fig. 2. The architecture of our collage deep convolutional neural network for patho-
logical vs. healthy kidney classification. See Fig. 1 for the input image representation.

not applicable to all constituent axial slices. To address this challenge, we propose
a novel approach where the slices within the 3D image are rearranged into an
extended 2D image collage (Fig. 1). In a non-shuffled collage representation, each
consecutive image slice (for 1-channel) or, a group of n consecutive image slices
(for n-channels, where n > 1) along a particular direction are sequentially placed
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on a 2D plane, which is schematically shown for a 1-channel and a 3-channels
(n = 3) image in Fig. 1(a) and (b), respectively. Note that we opt to keep the
collage dimension square (i.e. 512× 512 pixel) in this experiment, however it
is not a necessity. This collage not only ensures meaningful correspondence to
the volume’s single label but also allows for invaluable data augmentation by
simple random reshuffling of image slices as well as by rotation and flipping.
A non-shuffled 2D image collage representing an actual kidney CT data and
its shuffle-based three augmented collages are shown in Fig. 1(c) and (d)−(f),
respectively. Note that we prepare our CNN input data in a process shown in
Fig. 1(b), where we set n = 3. The resulting dimension of a single CNN input data
is 512× 512× 3 pixel and the output was either 0 (healthy) or 1 (pathological).

2.3 Pathological vs Healthy Kidney Classification

CNN Architecture. Our proposed CNN has seven layers excluding the input.
All of these layers except the 5th layer (concatenation layer) contained trainable
weights.

Layer C1 is a convolutional layer that filters the input image with 24 kernels
of size 4×4×3. Since we used collage-based image representation, we needed to
carefully design our filter sizes and strides in a way that the convolutional (Cx)
and max pooling (Px) filters do not overlap between two adjacent slices. To
achieve this, we chose each edge size of the convolution filter to equal the stride
in a particular layer. For example, the edge size of the convolution filter and
the stride in the C1 layer were 4 and 4, respectively (Fig. 2). We chose a small
convolutional filter size which tends to achieve better classification accuracy as
demonstrated in [17].

Layer C2 is the second convolutional layer with forty eight 4×4×24 kernels
applied to the output of C1. Unlike C1, we used a max pooling (P2) of 4×4×48
window in this layer to reduce the image size to 8×8 from 32×32.

The output of C2 is connected to a fully connected layer (F3), which contains
96 units. Similarly, a layer F4 contains 96 units and is fully connected to F3.
We concatenated the units of F3 and F4 into CT5 in order to reduce possible
information loss. This type of bypassing connections is typically suggested for
better classification accuracy [18]. Note that the CT5 layer did not have any
trainable weights.

The CT5 layer is connected to an F5 layer having 2 units. These units are
connected to a softmax layer (S), which produces the relative probabilities for
back-propagation and classification.

Solver. Our network was trained by minimizing the softmax loss between the
desired and predicted labels. We used an optimization method called Adam [19].
All the parameters for this solver were set to the suggested default values, i.e.
β1 = 0.9, β2 = 0.999, and ε = 10−8. We also employed a unit dropout (Dx)
that drops 50% of units in both F4 and CT5 layers and used a weight decay of
0.005. The base learning rate was set to 0.01 and was decreased by a factor of
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Fig. 3. Scatter plot showing the actual vs. predicted labels by the collage image-based
and 3D CNNs.

0.1 to 0.0001 over 25000 iterations with a batch of 32 images processed at each
iteration.

3 Results

We provide the classification accuracy results of our proposed collage image-
based CNN as a bar plot in Fig. 3. We also compare our performance to that of
a 3D CNN on the same plot. For the 3D CNN, we replaced the collage input
(512×512×3 pixel) with the full 3D volume (64×64×64 pixel) of the kidney
and performed 3D convolutions with a filter size of 4×4×64 with stride 4. For
fair comparison, we chose the 3D volume dimension as 64×64×64 pixel, since
each constituent axial slice in the collage was of 64×64 pixel. Other layer con-
figurations remained the same as in Fig. 2. Both CNNs were implemented using
Caffe [20]. The pre-processing of the data, visualizations, and comparisons were
done in Matlab using the MatCaffe interface. Training was performed on a work-
station with Intel 3.20 GHz Xeon processor, an Nvidia Quadro K600 GPU with
1 GB of VRAM, and 8 GB of host memory. Prior to generating the collage rep-
resentation of the input data, we ensured a uniform voxel spacing in the image
volume all axial, coronal and sagittal planes using interpolation. We manually
defined the kidney ROI (sub)volume within the CT data in such a way that
leaves an approximately 25% background area framing a kidney. Prior to train-
ing, both of the training and testing datasets were standardized.

In our experiments, we augmented the number of training samples by a factor
of 40 by flipping and rotating the image slices as well as by random reshuffling
the slice location within the collage. This augmentation process enabled by our
novel image representation yielded a total of 4,400 2D image collages for training.

As demonstrated in Fig. 3, our proposed method succeeded in all but only one
case out of 50 tested kidney samples, resulting in a classification accuracy of 98%.
In comparison, the 3D convolution-based CNN failed in eight cases resulting in
an accuracy of 80%.

Our preliminary results suggest that our proposed collage image represen-
tation may offer significant advantages for deep CNN-based classification tasks
on 3D data. Our collage representation allows the convolution kernel to slide
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over all the axial 2D slices in a 3D volume, which is impossible in case of a
3D CNN. The training time of the collage CNN was approximately 5 h (on our
basic machine) while the 3D CNN took approximately 7 h to converge. We also
augmented the 3D data by using data rotation and flipping before feeding to the
3D CNN, and the performance of the 3D CNN is expected to be better than our
collage CNN. But because of the better augmentation capability of the collage
representation, it performed better compared to the 3D CNN in our experiment.
Thus, the collage representation seems best suited in the insufficient annotated
medical data scenario. It is worth noting that in order to improve the classifi-
cation accuracy by the 3D CNN approach, one may possibly have to increase
the convolution kernel size and/or decrease the stride size in order to capture
more features from the image volume. However, this would drastically increase
the number of trainable weights, which would necessitate the use of expensive
GPUs with large memory, and would cost more time to converge.

4 Conclusions

In this paper, we proposed a novel collage image representation within a CNN
based classification scheme to enable deep learning from sparsely labelled 3D
datasets. We applied our proposed method on CT abdominal scans from the
TCIA database to discriminate healthy from cancerous kidneys containing renal
cell carcinoma. Our method enables efficient 2D slice-based learning in the
absence of slice-based labels. In addition, the proposed collage inherently allows
for easy data augmentation through random reshuffling of the locations of image
slices within the collage, thus facilitating more efficient training of the implicit
relationship between bag labels and feature representation in weekly supervised
ML settings. Our approach was shown to be impressively effective (98% classifi-
cation accuracy) on weakly labeled data on a small sized data base of 160 kidney
CTs outperforming 3D CNNs, though the latter’s performance could potentially
be improved with significant increase in labeled data as well as computation cost.
In future work, we plan to couple an automatic kidney localization setup prior
to proceed our proposed classification to produce a fully automated end-to-end
kidney discrimination clinical tool.
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